Crystallography, Magnetic Resonance and Modeling Laboratory

bandeau-01
bandeau-05
bandeau-22
bandeau-19
bandeau-04
bandeau-13
bandeau-12
bandeau-11
bandeau-10
bandeau-21
bandeau-18
bandeau-17
bandeau-24
bandeau-16
bandeau-15
bandeau-23
bandeau-14
previous arrow
next arrow

Malaysia

« Mathematical Methods in Macromolecular Crystallography: Theory and Practice »

August 19-22, 2002, University of Penang, Malaysia

(703 Kb)

August, 19
  • 9.00-10.30 Fundamentals :
    • – field of crystallography
    • – basic goal of structural crystallography
    • – crystals; direct space; fractional coordinates;
    • – crystallographic symmetries
    • – crystallographic space groups
    • – diffraction by crystals; structure factors; phase problem
  • 11.00-12.30 Fundamentals of Fourier transformation
    • – Fourier transformation of a periodic function
    • – three-dimensional Fourier transformation
    • – Fourier transformation of a grid function
    • – Fourier transformation and a convolution
    • – Fourier coefficients and the origin shift
  • 14.00-15.30 Models of crystals:
    • – Atomic structure
    • – Ionic crystals
    • – Symmetry and phase transitions
    • – Molecular crystals; macromolecules
    • – Proteins, nucleic acids, viruses, macromolecular complexes
    • – secondary and spatial structure
    • – model of independent isotropic atoms
    • – fixed-bond models for chain molecules
    • – anisotropic atoms
    • – multipolar modelling
    • – crystallographic solvent molecules and bulk solvent
    • – other models
    • – different levels of a crystal description
  • 16.00-17.30 Problem of structure determination :
    • – phase problem
    • – direct methods
    • – intermediate density calculation
    • – density analysis and interpretation
    • – model refinement
    • – history and milestones
August, 20
  • 9.00-10.30 Patterson methods
    • – Patterson function and its properties
    • – Patterson function and the atomic structure
    • – resolution of the Patterson function
    • – superposition methods
  • 11.00-12.30 Fundamentals of probabilities , statistics and linked tools
    • – Central Limit Theorem
    • – Bayesian approach
    • – likelihood approach
    • – least-squares method
    • – von Mises distribution; modified Bessel functions
  • 14.00-15.30 Direct methods
    • – distribution of structure factors
    • – sigma-2 formula
    • – tangent-formula
    • – MULTAN approach
  • 16.00-17.30 Molecular Replacement :
    • – use of a particular information : approximate model
    • – 6D-search
    • – rotation function
    • – translation function
    • – rigid-body refinement
August, 21
  • 9.00-10.30 Experimental methods (MIR, SIR, MAD)
    • – experiment in modified conditions
    • – SIR method
    • – Hendrickson-Lattman phase distribution
    • – MIR method
    • – MAD method
  • 11.00-12.30 Optimisation techniques :
    • – different classes of optimisation techniques
    • – optimisation without derivatives
    • – gradient methods
    • – second-order optimisation methods
    • – numeric realisation of optimisation techniques
    • – random search methods; Metropolis algorithm
    • – optimisation of several criteria simultaneously
    • – optimisation with constraints
    • – methods of Binary Integer Programming
  • 14.00-15.30 Atomic model refinement :
    • – the problems of the refinement
    • – Fast Differentiation algorithm
    • – fast calculation of structure factors
    • – crystallographic criteria and their derivatives
    • – scheme of a refinement program
    • – model quality
  • 16.00-17.30 Model building :
    • – main difficulties
    • – main information
    • – basic ideas : connectivity, libraries
    • – automated model building
August, 22
  • 9.00-10.30 Density improvement
    • – main principles of density improvement
    • – iterative algorithms
    • – density modification
    • – solvent flattening
    • – histogram matching
    • – atomicity
  • 11.00-12.30 Direct phasing from low resolution
    • – phasing and extra general information
    • – different approaches to phasing; direct and reciprocal space
    • – generalised models
    • – multiples minima and the search of the solution
    • – cluster analysis and general scheme of the direct phasing
    • – direct phasing with histograms
    • – connectivity features of Fourier maps and direct phasing
    • – binary integer programming and direct phasing
  • 14.00-15.30 Currently existing methodological problems
    • – data analysis, space group determination; twinning
    • – difficult cases of molecular replacement; search with multiple models or with a very small partial model;
    • – phase improvement: decreasing limits on starting phase error and resolution
    • – modelling at subatomic resolution
    • – modelling at low and at intermediate resolution
    • – refinement: large objects, high resolution; large number of data and parameters;
    • – folding; model building by homology; structure prediction
    • – direct phasing from low resolution; determination of the secondary structure elements
    • – structure analysis; docking
at