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It is shown that the twin index » calculated, according to Friedel, as a function of
the indices (hkl) and [uvw] of the lattice plane and lattice direction defining the
cell of the twin lattice applies only to twofold twins, i.e. twins where the twin
element is of order 2. For manifold twins, where the twin operation is a three-,
four- or sixfold (direct or inverse) rotation, it is shown that the generalized
formula becomes n = NE/&, where N is the number of lattice planes of the (hkl)
family passing within the cell of the twin lattice, E the two-dimensional
coincidence index for a plane of the (hk/) family and £ the number of planes out
of N of that family that are partially restored by the twin operation. The
existence of twin lattice quasi-symmetry (TLQS) twins with zero-obliquity in
manifold twins leads to the introduction of a new parameter as a general
measure of the pseudo-symmetry of TLQS rotation twins: the twin misfit §,
defined as the distance between the first nodes along the two shortest directions
in the plane of Ly (quasi-)perpendicular to the twin axes that are quasi-restored
by the twin operation. Taking the example of staurolite twins, several
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1. Introduction

In this article, we use the same nomenclature and symbols
described in our recent study on hybrid twins (Nespolo &
Ferraris, 2006). Here we give a short summary of the basic
concepts of the reticular theory of twinning; more details can
be found in the quoted article.

A twin is a heterogeneous crystalline edifice consisting of
the oriented association of two or more homogeneous crystals
(individuals). A twin operation is a crystallographic operation
mapping the orientation of one individual on the orientation
of another individual. A twin element is the lattice element of
the individual (plane, row, centre) about which the twin
operation is performed: Mallard’s law (Friedel, 1926) states
that a twin element is always a direct-lattice element, although
it may sometimes be useful to use a reciprocal-lattice element
instead, especially when unravelling the diffraction pattern of
a twin, i.e. when the reciprocal lattice is inspected. The twin
operation is a coincidence operation for the lattice of the
individual (L;,q hereafter) or a sublattice of it: the lattice
nodes that are brought to coincidence are said to be ‘restored’
and define the twin lattice, L. This restoration may be exact or
approximate and correspondingly one speaks of TLS (twin
lattice symmetry) or TLQS (twin lattice quasi-symmetry),

inconsistencies in the treatment of manifold twins are pointed out.

respectively (Donnay & Donnay, 1974). Depending on the
nature of the twin operation, twins are classified as reflection
twins, rotation twins and inversion twins. In the latter case, L;4
coincides with Lt . For rotation or reflection twins, instead, this
is not always the case and Lt can be a sublattice of L;,4. The
fraction of lattice nodes of Ly restored by the twin operation
corresponds to the ratio of the volume of primitive cells of Lt
and L;,q4.

The twin elements are (pseudo-)symmetry elements for the
twin lattice L. A (pseudo-)symmetry plane (hkl) is (quasi-)
perpendicular to a lattice row [uvw], and a (pseudo-)symmetry
axis [uvw] is (quasi-)perpendicular to a lattice plane (hk/). The
cell of Lt is defined by the pair [uvw] and (hkl) and the twin
index is easily computed in terms of the indices of these two
elements, without the necessity of passing through the volume
of the cells of L;,y and Lt (Nespolo & Ferraris, 2006). When
[uvw] and (hkl) are not mutually perpendicular, the twin is of
TLQS type; consequently, the symmetry of Lt is close to a
higher holohedry and the degree of pseudo-symmetry is
normally given in terms of the obliquity, that is the angle
between [uvw] and the irrational direction perpendicular to
(hkl). These criteria were introduced by Friedel (1904, 1920,
1926) and are routinely applied today. Hereafter, we show that
they were implicitly limited to the case of twofold twins, i.e.
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Table 1

Classical classification of crystal twinning.

A finer classification is given in Nespolo & Ferraris (2006). For twofold twins,
the classification in terms of obliquity and of misfit (for the definition of the
latter see §3) coincides; however, for manifold twins the latter correctly assigns
quasi-symmetry twins to pseudo-merohedry or reticular pseudo-merohedry
even when zero obliquity would put them in a wrong category.

Twin index n Obliquity @ Misfit § Revised Friedel classification
=1 =0 =0 Merohedry
=0 >0 Pseudo-merohedry
>0 >0
>1 =0 =0 Reticular merohedry
= >0 Reticular pseudo-merohedry
>0 >0

twins where the twin operation is of order 2. In this article, we
prove that, for manifold twins, where the twin operation is a
three-, four- or sixfold (direct or inverse) rotation [for details
about definitions and classifications, see Nespolo (2004)], both
the formula to compute the twin index in terms of [uvw] and
(hkl) and the definition of TLQS in terms of the obliquity no
longer apply. We propose a generalization of both criteria. The
inconsistencies resulting from the uncritical application of
Friedel’s criteria to manifold twins are discussed by analysing
the example of the classical twins in staurolite.

2. Calculation of the twin index in manifold twins

The classical classification of twins in terms of twin index and
obliquity recognizes four categories (Table 1). Friedel’s
formula to calculate the twin index is (Grimmer & Nespolo,
2006; see also Donnay & Donnay, 1959, and Nespolo &
Ferraris, 2005)

=X

n=X/f )

X = |uh + vk + wl|,
where f =1, 2 or 4 depending on the Bravais-lattice type and
the parities of X, u, v, w, h, k, I. (u, v, w have to be co-prime
integers, ditto for A, k, I.) When u, v, w, h, k, [ are expressed in
terms of a primitive basis of L;,q, f = 1 or 2 depending on
whether X is odd or even.

Let us consider the primitive cell of Li,q. X in equation (1)
gives the number of lattice planes of the (hkl) family between
two neighbouring nodes along the [uvw] direction. When the
cell of L;,q is not primitive, the number of lattice planes
between these two nodes may be X/2, X or 2X, depending on
the parities of the indices (Table 2): we shall hereafter indicate
this number as N.

If the twin operation is a twofold rotation about [uvw], all
nodes in the two planes of the (hkl) family passing through
two neighbouring nodes along the [uvw] direction are restored
(exactly in the case of TLS, approximately in the case of
TLQS) because a two-dimensional mesh has at least symmetry
2. If N is odd, all the other N — 1 planes intersect the lattice
row [uvw] neither on a node nor midway between two

Table 2

Number N of lattice planes of the family (hk/) between two neighbouring
nodes along the direction [uvw] as a function of the lattice type, of the
parity of the indices, and of the value X = |uh + vk + wl|; u, v, w are co-
prime integers, ditto for 4, k, I.

Lattice type Condition on A, k, [ Condition on u, v, w

P None None
C h+k odd u+v and w not both even 2X
u+v and w both even X
h+k even u+v and w not both even X
u+v and w both even X2
B h+l odd u+w and v not both even 2X
u+w and v both even X
h+l even u+w and v not both even X
u+w and v both even X2
A k+I odd v+w and u not both even 2X
v+w and u both even X
k+l even v+w and u not both even X
v+w and u both even X2
1 h+k+l odd u, v, w not all odd 2X
u, v, w all odd X
h+k+l even u, v, w not all odd X
u, v, w all odd X2
F h, k, [ not all odd u+v+w odd 2X
h, k, [ all odd X
h, k, [ not all odd u+v+w even X
h, k, I all odd X2

5

neighbouring nodes and therefore only one plane out of N has
all its nodes restored by the twin operation: the twin index is
N. If instead N is even, there is one plane of the same family
which intersects the lattice row midway between two neigh-
bouring nodes: the nodes on this plane are restored too. In this
case, there are two planes out of N having all their nodes
restored by the twin operation and the twin index is N/2.
When the twin operation is a rotation of higher degree
about [uvw], this simple criterion no longer applies, because in
general the rotational symmetry of the two-dimensional mesh
in the (hkl) plane no longer coincides with that of the twin
operation. The degree of restoration of lattice nodes must now
take into account the two-dimensional coincidence index Z
for a plane of the family (hk/), which defines a supermesh in
L1 Moreover, such a supermesh may exist in & planes out of N,
depending on where the intersection of the [uvw] twin axis
with the plane is located. The twin index is finally given by

NE
n—
3

(@)

In the case of a twofold rotation, E = 1 and £ = 1 or 2, which
shows that equation (2) is a generalization of Friedel’s equa-
tion (1) (remember that N = 2X, X or X/2 — see Table 2).

3. Zero-obliquity TLQS: redefinition of pseudo-
merohedry and reticular pseudo-merohedry

Donnay & Donnay (1974) introduced the categories of TLS
and TLQS essentially with the purpose of distinguishing twins
giving a diffraction pattern that shows ‘either a single orien-
tation of the reciprocal lattice or two (or more) distinct
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orientations having a common origin’. However, as shown in
Table 1 therein, this distinction turns out to be simply a matter
of separating zero-obliquity twins from those with non-zero
obliquity, so that nowadays TLQS is used as a synonym for
‘non-zero obliquity twinning’. This choice was somewhat
unfortunate for at least two reasons:

1. the existence of ‘two (or more) distinct orientations
having a common origin’ does not entirely rely on splitting of
diffractions; twinning by reticular merohedry normally results
in non-space-group absences which are among the strongest
criteria to suspect the presence of twinning (see, for example,
Nespolo & Ferraris, 2003, and Ferraris et al., 2004);

2. a non-zero obliquity means that Lt is close to a higher
holohedry — and this is at the origin of the term twin lattice
quasi-symmetry; however, the opposite is not necessarily true,
because a twin lattice can be pseudo-symmetric without the
need for a twin operation to correspond to a non-zero obli-
quity: this is typically the case of manifold twins.

The second argument shows that the obliquity alone is not
sufficient to differentiate between TLS and TLQS in the
case of manifold twins, as was already pointed out by
Santoro (1974) and later by Grimmer & Nespolo (2006).
Santoro (1974) introduced a measure of the deviation
suffered by the twin lattice in crossing the boundary from
one individual to the other. This measure consists in six
parameters A; which all go to zero for zero obliquity only
when the Ly twin lattice is not pseudo-symmetric. For zero-
obliquity TLQS twins, which occur in manifold twins, at least
one of the six parameters introduced by Santoro does not
vanish. A different formalism, related to the study of grain
boundaries, was introduced by Bonnet & Durand (1975). They
considered two transformation matrices: a linear part, repre-
senting the rotation necessary to complete the parallelism of
two lattices starting from their misoriented alignment; and an
affine part, which deforms one lattice to match the periodicity
of the other one.

The two approaches above, despite the advantage of being
quite general, give a measure of the lattice misorientation
which is less immediate to read. Here we introduce a new
single parameter, which not only gives the misorientation of
the lattices but, differently from the other parameters intro-
duced previously, for TLQS twins is also related to the twin
index. The new parameter, which we call twin misfit §, is
defined as the distance between the first nodes along the two
shortest directions in the plane of Ly (quasi-)perpendicular to
the twin axis that are quasi-restored by the twin operation.

Let uy,vqaw, and ugvgwy be the coordinates in Ly of two
nodes quasi-restored by the twin operation. If R, is the
rotation matrix representing in Ly the crystallographic rota-
tion by an angle ¢ about the twin axis, the quasi-restoration is
expressed by the equation

Ryluy vy wy)=luy vy wy)=lug vy wg),
where &~ means quasi-equal. The twin misfit § is then the
distance between the coordinates uy v w, and ugvgwg
obtained as

§=(Au Av Aw)'?

Au=u,6—u
A B

Aw |G| Au Av

3
Av=v —v ®)
Al B

Aw=w A —v
A B

where G is the metric tensor of Ly. For TLQS, u4v 4w, are in
general irrational and can be obtained as follows. In general,
the crystallographic basis of Lt is not orthogonal; let M be the
matrix transforming this crystallographic basis into an
orthogonal basis. This transformation can be done via a clas-
sical Gram—Schmidt orthogonalization. Because the coordi-
nates of a node are contravariant components, they are
transformed by the inverse matrix, M. If ‘cry’ and ‘or’
indicate variables expressed in the crystallographic and the
orthogonal basis respectively of Ly, the transformations are as
follows:

—1

M | Uy Vg Wy )cry = | Uy Vg Wy >or
R(p| Ug Vg Wy )or = | Uy Vg Wy )01’ (4)
Mluy, vy Wodog=Iluy vy wy )Cry.

The rotation matrix R, is expressed in the orthogonal
setting. For twofold twins, the above calculation simplifies
drastically because there is a 1:1 relation between the obliquity
and the twin misfit: the latter is the basis of an isosceles
triangle whose vertex angle is w, so that § = 2p sin w, where p is
the period of the shortest direction in the primitive mesh
quasi-perpendicular to the twin axis, which forms the equal
sides of the isosceles triangle (in the case of twofold rotation
twins, all directions in this plane are quasi-restored).

Note that when the same direction may act as twin axis of
different orders, giving different twins, the obliquity cannot
differentiate these twins, whereas the twin misfit does, as will
be shown for the [013] twins in staurolite.

The twin misfit is obviously zero for TLS twins. However,
for TLQS twins the twin misfit is richer in information than the
parameters previously introduced (Santoro, 1974; Bonnet &
Durand, 1975). Suppose two compounds A and B have the
same space-group type but A has larger lattice parameters
than B. If both crystals undergo twinning according to the
same twin law, they have the same twin index and the same
obliquity, whereas the twin misfit 64 is larger than éz. Because
the cell of Ly, and in particular the two-dimensional mesh in
the contact plane, are also larger for A than for B, the prob-
ability of occurrence of the twin is expected to be higher for B,
all the other factors being constant. The other parameters
proposed previously cannot differentiate the two cases.

Friedel’s classification in Table 1 classifies twins by (reti-
cular) pseudo-merohedry as having @ > 0. We have seen that
for manifold twins this parameter is in general not sufficient
to fully characterize these twins: we therefore propose to
generalize the definition of twins by (reticular) pseudo-
merohedry as those twins having twin misfit § > 0.
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4. An instructive case study: the staurolite twins

Smith (1968) concluded his study on the crystal structure of
staurolite by saying that ‘staurolite remains an enigma’.
Although the structure and chemistry of staurolite are
nowadays well known, we are going to show that the inter-
pretation of its twins has been problematic up to now.

Well before a satisfactory structure solution of staurolite
was achieved, this mineral attracted the interest of miner-
alogists because of its twins. The structure of staurolite was
first solved by Naray-Szabé in 1929, who adopted the space-
group type Ccmm suggested one year before by Cardoso
(1928). This mineral is monoclinic, although its Bravais lattice
at ambient conditions is metrically orthorhombic: the correct
space group, of type C2/m, was determined by Hurst et al
(1956). In the same year, Juurinen (1956) suggested C222, as a
possible space-group type of staurolite but later Naray-Szabd
& Sasvari (1958) refined the structure and confirmed Hurst ez
al’s (1956) results. The chemical formula of staurolite was also
a subject of discussion for many years, as shown, for example,
by Griffen et al. (1982), Donnay & Donnay (1983) and
Alexander (1989).

Staurolite gives two penetration twins, known as the 90° or
‘Greek cross’ twin and the 60° or ‘Saint Andrews cross’ twin
(Friedel, 1904, 1922). These twins are often reported as
reflection twins on (031) and (232), respectively, but, as we are
going to see, this interpretation is not correct. A third twin,

Figure 1

The pseudo-tetragonal C-centred (red) and the corresponding primitive
(green) cell of the twin lattice for the Greek cross twin of staurolite. Red
nodes define the cell of the twin lattice and are restored by the twin
operations. Blue nodes are internal to the ¥-tC cell, black nodes external
to it. a, b, ¢ are the basis vectors of the individual, a’, b, ¢’ those of the
Y-tC cell of the twin, a@”, b”’, ¢’ those of the -tP cell of the twin. The cell
of L g (black) is shown on the negative side of b for the sake of clarity.

reported by Dana (1876) and quoted by Friedel (1904) as
having [320] as twofold twin axis or (230) as twin plane, was
only found once and never confirmed later (Hurst et al., 1956).
Both cross twins are twins by reticular pseudo-merohedry
(TLQS) and can be rationalized in terms of a common lattice
that is the pseudo-cubic primitive sublattice (y-cP; hereafter
Y followed by the standard lattice-type symbol is used to
indicate pseudo-symmetry) obtained from the C-centred cell
known as ‘Mallard’s pseudo-cube’ (Friedel, 1904). The latter is
obtained from L;,4 by the following transformation:

0
(a b c| |1
3

W =IO

3
0]=(a b c |Mallard’s pseudo-cube *
0

®)

The supercell corresponding to Mallard’s pseudo-cube has
multiplicity 36 and is C-centred: this centring is not compatible
with the cubic symmetry and therefore the lattice based on
Mallard’s pseudo cube is only pseudo-tetragonal (y-tC),
although it is metrically pseudo-cubic. Starting from the
staurolite lattice parameters used by Hahn & Klapper (2003),
a="7.871, b =16.620, c = 5.656 A, B =90°, Mallard’s pseudo-
cube parameters are a = 23.752, b = 23.752, ¢ = 23.613 A, o=
90.00, B = 90.00, y = 88.81°. The lattice based on Mallard’s
pseudo-cube is therefore mC but ¥-tC and metrically pseudo-
cubic. Both twins can be obtained by using a symmetry
element of the Y-cP sublattice as twin element, although for
the Greek cross twin a smaller pseudo-tetragonal cell is
sufficient to explain the twinning. As we are going to show,
despite a number of studies on staurolite twins, some impor-
tant mistakes still remain even in the most recent literature. In
the following examples, when describing the choice of the
axial setting to compute the twin misfit §, we will always take
the twin axis as the ¢ axis of Lt or of the orthogonal reference
obtained from Ly by the orthogonalization process.

4.1. Greek cross twin

The 90° twin is easier to explain: Ly is the pseudo-tetragonal
sublattice obtained from Mallard’s pseudo-cube by taking 1/3
of its ¢ parameter, which thus coincides with the a parameter
of the individual; the cell parameters of Ly are obtained by the
transformation

{(a b clLind

—(a b cl,. (6

W= o
W =1Oo
S O =

The resulting cell of Lt is ¥-tC and has multiplicity 12; the
lattice parameters are a = 23.752, b = 23.752, ¢ = 5.656 A, o=
90.00, B =90.00, y = 88.81°. The twin index, 6, corresponds to
the value of the determinant of the transformation matrix
because the two cells have the same multiplicity (both are
C-centred). The setting of Ly is easily transformed to the
conventional primitive ¥-tP cell, the transformation from the
conventional cell of L;,4 being

Acta Cryst. (2007). A63, 278-286
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0 0 1
(a b cly |1 0 0|=(a b clyp (7)
0 30

Hurst et al. (1956) erroneously assigned twin index 3 instead of
6 to this twin. This error probably came from the fact that the
transformation matrix from the mC cell, metrically oC (u-oC
hereafter), to the ¥-tP cell has determinant 3: the two cells
however do not have the same multiplicity. The transforma-
tion matrix from p-oC to ¥-tC (same multiplicity) has deter-
minant 6, which coincides with the twin index.

The ratio of the point groups of the holohedries corre-
sponding to Lrand L;,4 is 16/8 = 2 (the lattice of staurolite is
actually orthorhombic) and the twin is described by the
dichromatic twin point group 4'/m2/m2'/m’ (Curien & Le
Corre, 1958; Nespolo, 2004). The coset decomposition of the
twin point group with respect to the point group of the indi-
vidual gives two cosets, the first being the point group mmm of
L;,q (elements indexed in the axial setting of the individual):

4 /m2/m2' |m
={1, 2[010]» 1, Mo10]» 2[001], 2[100]7 Mpo1] m[m()]}

U {43001’ 2(013), Moz 4{500]’ 4i100)s 210131 Myo13)s Hpiooy}-
®)

When doing a coset decomposition of a twin point group
with respect to the point group of the individual, each coset
represents a twin law and each operation in a coset is a
possible twin operation. The Greek cross twin is obtainable by
only one twin law. In the case of TLS twinning, all the
operations in a coset are equivalent under the symmetry
operations of the individual: any of them can be taken to
represent the twin law, and it is then called coset representative.
In the old textbooks, the coset representative was taken as
(032) referred to the old morphological ¢ parameter, which is
twice the structural parameter. After correction of the ¢
parameter, the coset representative was also amended to
(031). In both cases, the twin was described as a reflection
twin, despite several pieces of evidence since Friedel (1920)
that staurolite twins are actually rotation twins. Furthermore,
in our case Ly is only pseudo-tetragonal and twinning is thus of
TLQS type: the eight operations in each coset in equation (8)
are only approximately equivalent; besides, each pair of twin
operations related by the inversion centre of the crystal form a
pair of non-equivalent corresponding twins (Friedel, 1926),
also known as reciprocal twins (Miigge, 1898).

The above analysis can be found also in Hahn & Klapper
(2003), which is however affected by a problem in the calcu-
lation of the twin index, resulting in an inconsistent classifi-
cation of the twin operations. Four of the twin operations in
the coset are fourfold (direct or inverse) rotations about the
[100] direction, which is perpendicular to the (100) lattice
plane. The obliquity is zero but this is clearly a case of TLQS
twinning, because Lt is only pseudo-tetragonal; in fact,a= b =
23.752 A but y = 88.81° [a similar case of twinning in leucite
was described by Grimmer & Nespolo (2006)]. If one simply
applies Friedel’s formula to these operations, one would get

twin index 1, whereas the same formula applied to the other
four operations gives the correct value of 6. Evidently, two
operations in the same coset cannot correspond to different
twin indices because they would no longer be equivalent
under the action of the subgroup in terms of which the group
of Lt has been decomposed. Nevertheless, Table 3.3.9.1 in
Hahn & Klapper (2003) divides the eight possible twin
operations into two groups, one containing the fourfold
operations and corresponding to a ‘twin index 1°, the other
corresponding to twofold operations and to twin index 6. Fig. 1
shows a portion of L;,4, where the {-tC (red) and v-tP (green)
cells have been marked. Red nodes are restored by the twin
operation (they are the nodes at the corners of the cell of Ly
and, for the case of the ¥-tC cell, at the centre of the C face);
blue nodes are internal to the -tC cell of Ly but not restored
by the twin operations; black nodes are external to the y-tC
cell of Lt. A rapid glance at the figure shows that the y-tC cell
contains 12 nodes, of which two are restored (red ones): the
twin index is 6, as expected. The y-tP cell of L contains red
nodes only at the corners, namely one out of six, giving once
again twin index 6. If we now look at the result of a fourfold
rotation about [100] of the individual (that is, about [001] of
the twin), we see that N =2.X =2 (Table 2), one node (the red
one) out of three is restored by the twin operation for the
lattice planes of the (100) family passing through a lattice node
on the [100] direction (thus E = 3) and none for the other
planes of the same family, i.e. the partial restoration is realized
for one plane out of N =2, so that £ = 1. Equation (2) gives the
twin index: 3 x 2/1 = 6, as expected. The obliquity is @ = 0°
despite the TLQS nature of this twin. The twin operation does
not bring the 100 node of the twin lattice to coincide exactly
with the 010 node but slightly away from it because of the
88.81° angle between the [100]y, and the [010];, directions. The
distance between the two nodes, which represents the twin
misfit, is § = 23.752 sin (90 — 88.81) = 0.493 A.

Hurst et al. (1956) gave three possible twin operations in the
Greek cross twin: 4pigo), 2j013] and (031) = myg;3;. The three
operations above are also those given by Friedel (1922) once
the correct lattice parameters are chosen (Donnay & Donnay,
1983). Friedel (1922) chose as twin operation 4o, not
because of a ‘lower twin index’, as suggested by Hahn &
Klapper (2003) but because, despite the scarcity of samples, he
could measure the angle between the faces g' — corresponding
to the (010) faces in the Hatliy-—Lévy notation — and found that
the best accord was for the values computed for this twin
operation. Hurst et al. (1956) performed an X-ray precession
study on three Greek cross twins and found that in two cases
Friedel’s choice was correct, while in the third case the twin
operation was 2(g;3): this third case corresponds to w = 1.19°.
The shortest lattice direction in the (031) plane, quasi-
perpendicular to [013], is the a axis of L;,4 but this direction is
exactly restored by the twin operation: in fact, y(L;,q) = 90°,
which implies that also «(Lt) = 90°. The second shortest
direction in the (031) plane is [013], p = 23.752 A and the
obliquity is 1.19°. It follows that § = 2 x 23.752 sin (1.19) =
0.987 A. All the three samples investigated are rotation twins
and not reflection twins: Hurst ef al. (1956) pointed out that a
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Table 3

Coset decomposition of m3m in terms of 4/mmm; j1-oC: axial setting of the individual (metrically

0C); Y-cP: axial setting of the twin (pseudo-cubic).

sponding to 16 different operations that
would be strictly equivalent in the case
of TLS, whereas they are only approxi-

4/mmm First coset Second coset mately equivalent in TLQS.

u-oC Y-cP u-oC Y-cP n-oC Y-cP The cell of Ly for the Saint Andrews
1 1 e at ab K cross twin can be ez'lsily' obtained frf)m
2010] 24t 30 3 3 S the 1//-1'C (red) cell.ln Fig. 1, by taking
1 1 ‘_‘[3131 Z;[Bm] Z1[+OB] ‘_‘Hom three times the period along the mono-
Mioo) Mo 3 3 3 3 clinic a axis (the c axis of Ly) and by
2p001] 2(110] 3 3 3002 301 drawing as blue the node at the centre of
2100; 2001 2p313) 2p01) 2313 211 the C face. The coset decomposition is
Mygo1) myi10] 303 3 3102 3 given in Table 3 in terms of both the
M[100] M(o01] my313) Mpion) mpsi3) Myoi] u-oC cell of L;,q and the v-cP cell of Ly,
400 4o 3oy 3y 3520 3] to facilitate the comparison. The twin
:_:QOUJ ;@0” ;%2"1 g@” gﬁ"ﬂ ;ﬁi” index is in all cases 12, but in the litera-

100’ 001 102 111 320] 111 : .

‘_‘Emj 4—‘%011 3%201 é%nj 5%021 gi_ﬁli ture we find .dlfferent Va'llges, we shall
2013 20 2513 24ion Ao Ao br'1eﬂy explain the origin of these
Mo13) M[100] m313) Mion) ‘1[613] ‘1[7001 mistakes. . .

201 20101 451y 451 213 20011 The operations in Table 3 are the same
M Mporg) 4y 45 mysis) Moy as those given by Hurst et al. (1956), who

reflection twin cannot be a penetration twin because the
composition surface cannot be plane.

Because the structure of staurolite is actually monoclinic,
further twinning by metric merohedry (Nespolo & Ferraris,
2000) is also possible, which corresponds to the dichromatic
point group 2'/m'2/m2’'/m’, with coset decomposition

2 /m2/m2 [m’ = {1, 2[010]7 1, m[om]} U {2[00117 2[100], Moo1)» m[100]}'

Being a twin by (metric) merohedry, this one could coexist
with the cross twin without being detected by morphological
analysis. The geometry of the diffraction pattern would not
reveal its presence either, unless significant deviation of the
angle from 90° exists. To our knowledge, this additional
twinning has not been confirmed so far.

4.2. Saint Andrews cross twin

For the Saint Andrews cross twin, Ly is the -cP sublattice
of the y-tC lattice defined by Mallard’s pseudo-cube. In fact,
the latter is metrically pseudo-cubic but the C-centring is not
compatible with a cubic (pseudo-)symmetry. Hahn & Klapper
(2003, p. 424) stated that, because of this centring, ‘the 60°
cross cannot be explained by the lattice construction of the
pseudo-cube’. Actually, this twin is explained by taking the
Y-cP sublattice of Mallard’s pseudo-cube obtained by ignoring
the C-centring vector. In dealing with twinning, to take a
sublattice means that the nodes being neglected are not
restored by the twin operation. The twin laws are found by
decomposing the cubic holohedry (pseudo-symmetry of the
twin lattice of the Saint Andrews cross twin) in terms of the
tetragonal holohedry (pseudo-symmetry of the twin lattice of
the Greek cross twin). The ratio of the order of the point
groups corresponding to the cubic and the tetragonal holo-
hedries is 48/16 = 3 and there are thus two possible twin laws
(the third coset being the tetragonal holohedry), each corre-

did not classify them in terms of twin

laws. Apart from some indexing differ-
ence because at those times the cell of staurolite was given
with twice the correct ¢ parameter, five of these operations
were given also by Friedel (1922), namely: 3102}, 3[3205 2(313)>
(231) and 4(y;3). When indexed with respect to the axial setting
of ¥-cP, these become, respectively: 3111}, 3111} 2[101), (101)
and 4y;(0;. The first four operations belong to the first coset, the
last one to the second coset. Hurst et al. (1956) confirmed 3oy
in one case and 233 in two other cases. They stated that the
pseudo-cubic cell has multiplicity 18, which corresponds to the
determinant of the transformation matrix in equation (5).
However, the cell of the individual is C-centred and thus the
cell of L, which is 18 times larger, has multiplicity 36. Because
of this mistake, Hurst et al. (1956) assigned twin index 6
instead of 12 to this twin.

Hahn & Klapper (2003) (Table 3.3.9.1) assigned four
different values to the twin index of the Saint Andrews cross
twin: 3 for 3[yoz), 9 for 33, 6 for 43, and 12 for 23,3 and
(231)." These inconsistencies come once again from the direct
application of Friedel’s formula (1): in fact, the correct value
of 12 is found when this formula is applied to binary opera-
tions, like 2313 and (231), which are mutually quasi-perpen-
dicular. In the other cases, the calculation should be
performed with the formula in equation (2).

(i) The direction [102] is quasi-perpendicular to (101), so
that N =2X = 6 (Table 2). The directions defining the primitive
two-dimensional mesh in the (101) plane are [010] and [101],
90° apart, whose parameters are 16.620 and 9.619 A, namely
a ~ b x 3" the classical orthohexagonal relation. In this
plane, we can therefore find a pseudo-hexagonal sublattice
with coincidence index E = 2: every second node is restored by
the twin operation. Had the mesh been centred, the whole

! Hahn & Klapper included also (031) among the twin elements of the Saint
Andrews twin. This is however a twin plane for the Greek cross twin and a
symmetry plane for the y-tP sublattice.
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two-dimensional lattice would be pseudo-hexagonal [other
examples of the same kind are in aragonite, NH,LiSO, and
compounds of the K,SO, type, see Hahn & Klapper (2003,
p- 424)]. Only one plane of the family (101) behaves in the
same way when a threefold rotation is applied about the [102]
direction, so that & = 1. The twin index is therefore 6 x 2/1 =
12, as expected. A geometrical interpretation is -easily
obtained by taking three pseudo-tetragonal cells in Fig. 1: the

Figure 2

The (001) plane of staurolite with the projection of the cell of the twin
lattice corresponding to the [320]/(130) pair marked in bold. [310] and
[320] are two of the directions defining the cell of Ly, the third one being
[001], the direction of the projection. The red dotted rows are the trace of
the planes of the family (130) passing within the cell of Ly: there are nine
planes of this family from the origin to the first node along the [320]
direction.

*

o /
-— g * L

Figure 3

The (130) plane of staurolite with its pseudo-hexagonal mesh of
multiplicity 12 shown in red. The axes of this mesh are along the [313]
and [313] directions of staurolite (33.492 A), the inter-axial angle being
119.12°.

first node along the [102] direction on the corner of Mallard’s
pseudo-cube is 306. Besides the nodes at the corners, two
other nodes on the direction [102], namely 102 and 204, are
also restored, leading to the twin index of 36/3 = 12.

(ii) The direction [320] is quasi-perpendicular to (130).
Hahn & Klapper (2003) attributed twin index 9 to the twin
produced by a threefold rotation about the [320] direction. As
shown in Fig. 2, nine is the number N = X (Table 2) of lattice
planes of the family (130) from the origin to the first node
along the direction [320]: it would coincide with the twin index
only if the twin operation were a twofold rotation. Fig. 3 shows
that in the (130) plane there is a pseudo-hexagonal mesh of
multiplicity 12 and 12 is also the coincidence index E: the
nodes defining this mesh (red in Fig. 3) are quasi-restored by
the twin operation, the others are not. One can show that the
same holds for all the nine planes: in Fig. 3, the lattice rows
parallel to the ¢ axis can be divided in two types which alter-
nate regularly: one has one node out of six (quasi-)restored by
the twin operation, the other has no node restored at all, which
eventually gives E = 12. The same holds for the next plane: the
row [10/] has (quasi-)restored the nodes with / = 2(mod 6), the
row [41] has (quasi-)restored the nodes with / = 5(mod 6), the
lattice row passing through the node at 2.5¢ and —0.5b has
none of its nodes restored. This finally leads to & = 9, so that
the twin index is 9 x 12/9 = 12, as expected.

(iii) The direction [013] is the same as that responsible for
one of the Greek cross twins when it acts as twofold axis; when
instead it acts as a fourfold axis, it gives one of the Saint
Andrews cross twins. Hahn & Klapper (2003) attributed twin

Figure 4

(100) projection of the staurolite lattice showing in red the directions
[013] and [013] defining the cell of the twin lattice. Dotted red lines are
the traces of the 11 planes of the family (031) between the origin and the
first node along the [013] direction. The numbers in colour are the u
coordinate, expressed in the axial setting of the individual, of the lattice
nodes inside the cell of the twin lattice restored by the operations 4[+0] 3
(green), 4p;5 (blue) and 23 (red).
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index 6 instead of 12: the result is correct for the Greek cross
twin, not for the Saint Andrews cross twin. The number of
lattice planes of the family (031) between the origin and the
first node along the [013] direction is N =2X = 12 — see Table 2
and Fig. 4. The coincidence index of the (031) plane for a
fourfold rotation is E = 3, but only three planes out of the
twelve are partially restored by the twin operation (& = 3):
besides the plane at the origin, also the plane containing nodes
002 and 004 is restored (indexing with respect to the axial
setting of L;,4). In fact, a fourfold rotation about [013]
restores, besides the node at the origin, the nodes 202 and 104
(positive rotation) or 102 and 204 (negative rotation): these
are the lattice nodes that, after application of the twin
operation, have their uvw indices transformed to integer w
and integer or half-integer u and v. The twin index is thus
12 x 3/3 = 12, as expected.

It is particularly instructive to compare the measure of the
pseudo-symmetry of Ly in the cases above by means of the
obliquity @ and of the twin misfit §.

(i) For 3[4, the lattice plane quasi-perpendicular to the
twin axis is (101) and the pseudo-hexagonal mesh therein is
defined by the directions [202] and [111] forming an angle of
120.25°. The parameters of Lrare at = [1li]L‘nd (19.240 A), br=

3

[202]Lmd (19.385 A), ¢y = [102], , (13.781 A), arp = 89.13, Br =
90.44, yr = 120.25°. The obliquity is w = 1.49° and the twin
misfit is § = 2.548 A.

(ii) For 33, the lattice plane quasi-perpendicular to the
twin axis is (101) and the pseudo-hexagonal mesh therein is
defined by the directions [313] and [313]. The parameters of Ly
are ar = [313]y, (33492 A), by = [313]y,, (33492 A), ¢r =
[320]y,, (40.773 A), ar = 89.79, Br = 90.22, yr = 119.12°. The
obliquity is w = 0.37° and the twin misfit is § = 4.331 A.

(iii) For 4(3), the lattice plane quasi-perpendicular to the
twin axis is (031) and the pseudo-tetragonal mesh therein is
defined by the directions [013] and [013]. The parameters of Ly
are ar =3 x [100]y, , (23.613 A), by = [013],,, (23.752 A), ey =
[OiS]Lmd (23.752 A), ar =88.81, 1 =90, yr = 90°. The obliquity
is @ = 1.19° and the twin misfit is § = 0.493 A.

(iv) For 23,3, the lattice plane quasi-perpendicular to the
twin axis is (231). The shortest direction in this plane is [102]
(13.781 A), the obliquity is 1.30° and the twin misfit is § =
2 x 13.781 sin (1.30) = 0.625 A.

These four twins correspond to similar obliquities but quite
different twin misfits. Hurst e al. (1956) have confirmed the
two twins corresponding to intermediate misfits (0.625 and
2.548 A). We would expect to find the one with the smallest
misfit (0.493 A) but probably not the last one, 3(3,), because of
the very large twin misfit.

It should also be emphasized, as mentioned above, that the
twin misfit depends on the type of twin operation about the
same direction of L;,4. This is the case for [013], which acts as a
twofold twin axis (Greek cross twin) and possibly also as a
fourfold twin axis (Saint Andrew’s twin): in the latter, the twin
misfit (0.493 A) is half of that of the former (0.987 A).

The twin operations giving birth to the Saint Andrews cross
twins are those belonging to the pseudo-cubic sublattice but
not to the pseudo-tetragonal sublattice that corresponds to the

Greek cross twin. If we ignore the small deviation from the
exact cubic metric of Mallard’s pseudo-cube, the Saint
Andrew’s twins correspond to the trichromatic twin point

group
@1 e\ ®
4 ) 2
m m@D

(Nespolo, 2004). The coset decomposition in Table 3 corre-
sponds to the decomposition of this twin point group in terms
of the dichromatic twin point group of the Greek cross twin.

5. Conclusions

The investigation of the reticular aspects of twins, despite its
long history, is far from having said the last word. In the
present study, we have shown that the cases of manifold twins
were incorrectly treated both in terms of classification (zero-
obliquity twins which nevertheless are TLQS twins) and of
calculation of the twin index. The twin misfit is a more
meaningful parameter to estimate the occurrence probability
of a twin with respect to the twin obliquity, even if it is slightly
more cumbersome to calculate, especially for manifold twins.
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Souvigner (Radboud University, Nijmegen, The Netherlands)
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