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A critical analysis of some basic notions often overlooked in crystallographic

education is presented to correct some common oversights occurring both in the

literature and in textbooks. The crystal forms (face forms), defined in terms of

their geometric eigensymmetry, are 47 in number, not 48 as often found in the

literature. The split of the dihedron into dome and sphenoid calls for the

consideration of the physical properties of the faces building a form; in that case,

however, the same criterion should be used for all forms. By taking the

handedness of the faces as representative of the physical properties of the faces,

the occurrence of 130 crystallographic face forms (97 affine face forms and 33

enantiomorphic pairs) is demonstrated. Next, the correct use of non-coprime

Miller indices when a centred unit cell is adopted is shown, and the inconsistent

multiplication of Miller indices in the Bravais–Friedel–Donnay–Harker law is

pointed out. A geometric derivation of the reflection conditions is reviewed.

Finally, the inconsistent presentation of metric restrictions imposed by the

structural symmetry is pointed out and corrected.

1. Introduction

In 1836, the Italian poet Giacomo Leopardi (1836) ironically

challenged what he called the ‘magnificent and progressive

fate of the human race’, meaning the blind belief in an

unlimited and extraordinary progress for all mankind, the

optimistic legacy of the Age of Enlightenment. Two centuries

later we realize how far-sighted was his scepticism: the unde-

niable technological advances and the evolution of scientific

knowledge have not been paralleled by a comparable social

evolution in many parts of our world. Scientific advances have

increased exponentially the number and complexity of notions

and concepts that one is expected to master in any field, so

that some domains are increasingly being overlooked and

considered of lower priority, and the corresponding education

is continually reduced, sometimes to a minimal set of practical

notions. Particularly affected by this tendency are the most

interdisciplinary subjects, which belong to everywhere but

nowhere specifically. Crystallography is one perfect example:

it is tightly connected to all domains dealing with the structure

and properties of periodic matter (in whatever dimensions and

whatever geometry), spanning thus mineralogy (from which it

was born at the dawn of modern scientific thinking), materials

science, metallurgy, physics, chemistry, biochemistry and

mathematics, but one would have a tough task if today one

wanted to find a fully crystallographic lecture within a stan-

dard university curriculum. Some aspects of crystallography,

often reduced to a minimal set of indispensable concepts, are

dispersed in lectures specific to the major subjects. As a

consequence, approximate, imprecise and sometimes funda-

mentally wrong statements and definitions appear not only in
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lectures but also in textbooks, which go to press without

passing through the necessary screening of a competent

crystallographer, who may well become an endangered

species. The adoption of less effective presentations of basic

concepts is also frequent today, while older and too often

forgotten textbooks contain more effective and convincing

approaches. By paraphrasing Leopardi’s poem, one could say

that the ‘magnificent and progressive fate of crystallography’,

which one might expect as a legacy of the International Year

of Crystallography celebrated last year, is jeopardized by the

serious oversight and forgetting of many fundamental

concepts which represent the roots of our discipline.

Without the ambition of an extensive analysis, a task which

would require a much greater space and time frame, we dare

to present in the following a few examples of the imprecisions,

approximations and even mistakes often occurring in the

literature, which we hope may awaken interest in filling some

holes in the crystallographic background of those who have

undertaken the noble yet hard mission of training future

generations of knowledgeable crystallographers.

2. On the number of face forms

In crystallography, a form is defined as the set of all symme-

trically equivalent ‘elements’ with respect to the point group P

of the crystal. The definition of ‘element’ depends on the space

under consideration, namely

(i) in vector space, a crystal form or face form is a set of all

symmetrically equivalent faces;

(ii) in point space, a point form is a set of all symmetrically

equivalent points.

The polyhedron (in three-dimensional space) or polygon (in

two-dimensional space) of a point form is dual to the poly-

hedron or polygon of the corresponding face form, where

‘dual’ means that they have the same number of edges but the

number of faces and vertices is interchanged (ITA10; Hahn,

2005).1 The eigensymmetry of a form is a point group E which

either coincides with the generating point group P or is a

supergroup of it. We treat here specifically face forms, which

build the morphology of a euhedral crystal, to emphasize some

inconsistencies occurring in the literature.

The number of possible forms of a point group is infinite. In

fact, symbols with two – such as {hk0} – or three general Miller

indices – {hkl} – actually correspond to an infinite number of

forms, for the various possible values of the Miller indices. In a

real crystal only a limited number of forms are actually

realized, those with small Miller indices being typically of

larger size. Forms are classified into a finite number of types, in

terms of the Wyckoff positions of the point groups.

Face forms are classified on the basis of their symmetry

properties and of their orientation with respect to the

symmetry elements of the point groups in which they occur. Of

particular relevance for our discussion is the classification on

the basis of the eigensymmetry of the form. A form is called

characteristic if its eigensymmetry E coincides with the

generating point group P and non-characteristic when E is a

proper supergroup of P. Face forms bring a name dictated by

their eigensymmetry (Table 1) and in the following will be

called geometric (face) forms because they are defined in terms

of the eigensymmetry of their stereographic poles. The

number of forms is 47 and the minimal eigensymmetry a

geometric form may possess is mm2 or 222 (both of order 4).

Frequently in the literature, 48 forms are quoted because

the dihedron is split into ‘sphenoid’ and ‘dome’ depending on

whether it occurs in crystal class 2 or m [concerning the

difference between point groups, point-group types and

geometric crystal classes, see Nespolo & Souvignier (2009)];

the eigensymmetry is, however, mm2 in both cases. The

separation of the dihedron into a dome and a sphenoid

implicitly means to take into account not only the eigensym-

metry of the geometric form but also some physical property

of the faces building it. Quite obviously, if such an option is

adopted, it should be applied to all 47 geometric forms, not

only one of them. In that case, the number of forms becomes

much larger, as we are going to show. [The following analysis

was inspired by an email exchange (28 November 2005) with

Theo Hahn, reporting the opinion of Ellen Novack on the

purely geometric nature of the crystal forms typically used in

crystallography.]

As a criterion to introduce the consideration of the

symmetry of the physical properties of the faces building a

form we can take inspiration from the dome/sphenoid

distinction. The symmetry operation relating the two faces is

an operation of the first kind (rotation) in the case of a

sphenoid but of the second kind (reflection) in the case of a

dome. We can imagine assigning a handedness to each face,

which is either preserved or reversed, depending on the nature

of the symmetry operation. Thus, the sphenoid (crystal class 2)

would be composed of two left (or two right) faces, while the

dome (crystal class m) would be composed of one left and one

right face. If the two faces of the form do not present a

handedness, i.e. if they are achiral, one obtains the dihedron

(crystal class mm2): the achirality comes from the fact that the

eigensymmetry of the faces contains a symmetry operation of

the second kind (mirror reflection; the stereographic poles of

the faces are on a mirror). Accordingly, the three forms that

split from a dihedron when the handedness is taken into

account can be symbolically indicated as L2, LR and A2, where

L, R and A stand for left, right and achiral, respectively, and

the superscript 2 indicates the number of faces with the indi-

cated handedness. Obviously, L2 can equally be written as R2,

thus leading to an enantiomorphic pair of sphenoids.

The same analysis applied to all 47 geometric crystal forms

gives the results presented in Table 1, where they are split

according to their handedness, represented by what we can

call their handedness symbol, giving the sequence of the

handedness of faces building the form. The handedness

symbol is an immediate generalization of the symbols used for

the analysis of the dihedron and is composed of sequences like

[LR]n, where n means n repetitions of the faces to which the

superscript n is attached. For each form obtained in this way,

teaching and education
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1 For the sake of brevity, the different chapters of International Tables for
Crystallography will be quoted herein as ITAX for Vol. A, or ITBX for Vol. B,
where X is the number of the chapter.
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Table 1
The 47 geometric face forms, split according to the handedness of the faces as determined by the geometric crystal classes where the forms occur.

The handedness symbol in the third column gives the handedness of the faces as A (achiral), L (left), R (right); the number of faces of the same type (A, L or R)
occurring consecutively is given as an exponent (i.e. L4 is given instead of LLLL and [LR]2 instead of LRLR). In parentheses are the geometric crystal classes
where the corresponding form occurs. Bold denotes the eigensymmetry of the geometric form, which is also the geometric crystal class where the form is
characteristic. No distinction is made for the geometric crystal classes differing in their axial setting (like 42m versus 4m2 or 31m versus 3m1) because this has no
influence on either the eigensymmetry of the geometric form or the handedness of the faces. Geometric crystal classes with only symmetry operations of the first
kind are compatible with the existence of an enantiomorphic pair of forms, of which only one representative (L) is given. Each geometric crystal class occurs only
once for each form, with the exception of 42m and 2/m for the pinacoid, which may be oriented with the rotation axis of infinite order parallel or perpendicular to
the twofold axis of the point group, producing a form of type LR or A2, respectively. Closed forms are described with the sequences of faces in the northern
hemisphere first, starting from the doubly positive quadrant of the stereographic projection. A total of 130 crystallographic forms occur when the handedness of
the faces is taken into account, and of these 66 give rise to 33 enantiomorphic pairs of which only the L variant is listed. The table thus gives the 97 affine forms, i.e.
counting each enantiomorphic pair as one form, similar to the classification of space groups in 219 affine types, with only one representative for each of the 11
enantiomorphic pairs.

Geometric face forms Affine face forms

1 Pedion A (m, mm2, 4mm, 3m, 6mm), L (1, 2, 3, 4, 6)

2 Pinacoid A2 (2/m, mm2, mmm, 42m, 4/mmm, 3m, 62m, 6/mmm), LR (1, m, 2/m, 4, 4/m, 3, 6, 6/m), L2 (2, 222, 422, 32, 622)

3 Dihedron A2 (mm2), LR (m), L2 (2)

4 Rhombic disphenoid L4 (222)

5 Rhombic pyramid [LR]2 (mm2)

6 Rhombic prism A4 (mmm), [LR]2 (2/m, mm2)†, L4 (222)

7 Rhombic dipyramid [LR]2[RL]2 (mmm)

8 Tetragonal pyramid A4 (4mm), L4 (4)

9 Tetragonal disphenoid A4 (42m), L2R2 (4)

10 Tetragonal prism A4 (4/mmm, 4/m, 4mm, 42m, first kind), [LR]2 (4, 42m, second kind), L4 (4, 422)

11 Tetragonal trapezohedron L8 (422)

12 Ditetragonal pyramid [LR]4 (4mm)

13 Tetragonal scalenohedron [LR]2[RL]2 (42m)

14 Tetragonal dipyramid A8 (4/mmm), [LR]4 (4/m, 42m), L8 (422)

15 Ditetragonal prism A8 (4/mmm), [LR]4 (4mm), [LRRL]2 (42m), L8 (422)

16 Ditetragonal dipyramid [LR]4[RL]4 (4/mmm)

17 Trigonal pyramid A3 (3m), L3 (3)

18 Trigonal prism A3 (62m, 3m, 6), L3 (3, 32)

19 Trigonal trapezohedron L6 (32)

20 Ditrigonal pyramid [LR]3 (3m)

21 Rhombohedron A6 (3m), [LR]3 (3), L6 (32)

22 Ditrigonal prism A6 (62m), [LR]3 (3m), L6 (32)

23 Hexagonal pyramid A6 (6mm), [LR]3 (3m), L6 (6)

24 Trigonal dipyramid A6 (62m), [LR]3 (6), L6 (32)

25 Hexagonal prism A6 (6/mmm, 3m, 6/m, 6mm, 62m), [LR]3 (3, 3m), L6 (32, 6, 622)

26 Ditrigonal scalenohedron‡ [LR]3[RL]3 (3m)

27 Hexagonal trapezohedron L12 (622)

28 Dihexagonal pyramid [LR]6 (6mm)

29 Ditrigonal dipyramid [LR]3[RL]3 (62m)

30 Dihexagonal prism A12 (6/mmm), [LR]6 (3m), [LLRR]3 (6mm), L12 (622)

31 Hexagonal dipyramid A6 (6/mmm), L6R6 (6/m), [LR]6 (3m), [LR]3[RL]3 (62m), L12 (622)

32 Dihexagonal dipyramid [LR]6[RL]6 (6/mmm)

33 Tetrahedron A4 (43m), L4 (23)

34 Cube A6 (m3m, m3), [LR]3 (43m), L4 (23, 432)

35 Octahedron A8 (m3m), [LR]2[RL]2 (m3), L8 (432)

36 Tetartoid/pentagon–tritetrahedron L12 (23)

37 Pentagon–dodecahedron A12 (m3), L12 (23)

38 Tetragon–tritetrahedron A12 (43m), L12 (23)
39 Trigon–tritetrahedron A12 (43m), L12 (23)

40 Rhomb–dodecahedron A12 (m3m, m3, 43m), L12 (23, 432)

41 Diploid or didodecahedron [L3R3]2[R3L3]2 (m3)

42 Trigonotrioctahedron A24 (m3m), [L3R3]2[R3L3]2 (m3), L24 (432)

43 Tetragonotrioctahedron A24 (m3m), [L3R3]2[R3L3]2 (m3), L24 (432)

44 Gyroid or pentagon–trioctahedron L24 (432)

45 Hexatetrahedron [L3R3]2[R3L3]2 (43m)

46 Tetrahexahedron A24 (m3m), [L3R3]2[R3L3]2 (43m), L24 (432)

47 Hexaoctahedron [L3R3]4[R3L3]4 (m3m)

† The handedness symbol for the rhombic prism in class 2/m is clearly the same as in class mm2. To show that this is the case, it is enough to rotate the sphere until the poles of the prism
come onto the horizontal plane. ‡ The special case of a ditrigonal scalenohedron where the dihedral angles are 60� is a hexagonal scalenohedron. The specialized dihedral angles do
not increase the eigensymmetry of the form, as would be the case for a pyramid or dipyramid instead.
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the geometric crystal class(es) in which the form occurs is/are

given in parentheses; bold indicates that the form is char-

acteristic in that class, i.e. that the eigensymmetry of the form

coincides with the point-group type of that class. Geometric

crystal classes containing only operations of the first kind give

rise to forms with faces of the same handedness, symbol Ln.

For each of them the form of the opposite handedness, Rn, can

also occur, giving birth to enantiomorphic pairs of forms.

Inspection of Table 1 reveals that the 47 geometric forms

split into 97 affine forms. [The terms ‘affine forms’ and ‘crys-

tallographic forms’ are introduced to follow the same criterion

used to classify space groups into 219 affine types and 230

crystallographic types (ITA8).] Of these, 33 give rise to

enantiomorphic pairs (Ln and Rn), to give a total of 130

crystallographic forms (no attempt to suggest specific names

for each of them, like in the dome and sphenoid case, is made).

It should thus be evident that the number of 48 found in some

texts is spurious and finds its origin in the inconsistent

consideration of the handedness of only one form.

Because the minimal eigensymmetry of a geometric form is

orthorhombic, there are no characteristic forms in the triclinic

and monoclinic crystal systems (ITA10). The morphology, at

least if the crystal is euhedral, does reveal the point symmetry

of the crystal, even in the lower-symmetry crystal systems. This

comes from the fact that the morphological point symmetry of

the whole crystalline edifice corresponds to the intersection of

the eigensymmetries of the different forms building the

crystal:

P ¼ \iEðiÞ; ð1Þ
where E(i) is the eigensymmetry of the ith form (geometric

crystal class in bold in Table 1; the pedion and pinacoid are

never characteristic and their eigensymmetries are 1m and

1m/m, respectively).

The inconsistent terminology occurring sometimes in the

literature has to be emphasized. In particular, the use of

‘monoclinic prism’ makes sense only with reference to an

affine form. However, the morphological analysis is usually

limited to the geometry of the sample, where no monoclinic

prism exists, the corresponding geometric form having

eigensymmetry mmm.

If the term ‘monoclinic prism’ is not intrinsically wrong but

simply often used inconsistently, the term ‘triclinic prism’ used

by Li et al. (2010) is not correct, because a crystallographic

prism is incompatible with the inversion centre as a unique

symmetry element.

3. Are Miller indices always coprime integers?

The Miller indices of a family of lattice planes are usually

presented as coprime integers, i.e. reduced of all common

factors. This is correct when the direct lattice is indexed with

respect to a primitive basis. However, to give the simplest

possible matrix representation of the symmetry operations of

a crystal it is customary to make reference to the so-called

conventional cell (ITA9), which is often a centred cell. In this

case, the use of coprime integers to represent a family of

lattice planes, as done in many introductory texts, may become

contradictory with respect to the definition itself of Miller

indices. To show that this is the case, we have to recall that

Miller indices represent the orientation of a crystal face

(whether actually developed in the crystal morphology or not)

and thus also of all the lattice planes parallel to it. The nota-

tion (hkl) indicates a family of lattice planes, i.e. the whole set

of lattice planes having the same orientation with respect to

the chosen axial setting; the last of these planes, if actually

developed in the crystal morphology, is the crystal face with

the same indices. The Miller indices do not give the position of

any of the lattice planes of a family, which is instead repre-

sented by the equation

hxþ kyþ lz ¼ n; ð2Þ
(see equation 1.1.2.3 in ITB1; Shmueli, 2008) which precisely

fixes the position as a function of the parameter n. Now, n

should take only integer values (ITB1) when the coordinates

of a lattice node are put as the x, y, z values in equation (2). In

particular, it should give the first plane of the family after the

origin, in the positive direction, when n = 1. This plane thus

has intercepts 1/h, 1/k and 1/l on the a, b and c axes, respec-

tively. When the unit cell is primitive or when the planes of the

(hkl) family are parallel to the face of the unit cell containing

the centring vector, the above condition is consistent with

coprime Miller integers. This is no longer true in the other

cases. The contradiction is shown in Fig. 1 for the case of an oP

and an oC type of unit cell and the family of planes (h00). The

intercept on the a axis of the first plane of the family is 1/h. If

the unit cell is of type P then the first plane after the origin

passes through the lattice node 100, so that h = 1. In this case,

the family of lattice planes has Miller indices (100). However,

if the unit cell is of type C, the first plane after the origin passes

through the lattice node 1
2

1
2 0, so that h = 2. In this case, the

teaching and education
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Figure 1
(Top) oP and (bottom) oC unit cells, seen in projection along [001]. The
first plane of the (h00) family passes through the lattice node 100 in the
case of oP but through the lattice node 1

2
1
2 0 in the case of oC, so that the

intersection with the a axis is at 1 in the former but at 1
2 in the latter.

Consequently, h is reduced to 1 and 2, respectively, and the two families of
lattice planes are indicated as (100) and (200).
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family of lattice planes has Miller indices (200). To call this

family (100) would mean to state that the plane passing

through lattice node 100 is the first of the family, while it is

actually the second. In other words, it would mean denying the

presence of the plane passing through 1
2

1
2 0, contradicting the

choice of a C-centred unit cell. Also, putting the coordinates of

lattice node 1
2

1
2 0 into equation (2) one obtains m = 1

2 if the

Miller indices of this family are given as (100). Quite

obviously, the same happens for the family (0k0) if the unit cell

is B centred and for the family (00l) if the unit cell is

A centred, and for all the three families simultaneously if the

unit cell is F centred. This result is immediately extended to

the families (hk0) for a C-centred cell, (h0l) for a B-centred

cell and (0kl) for an A-centred cell: when the parity of the non-

zero indices is the same, then the density of lattice planes is the

same as that of a primitive unit cell, although the density of

lattice nodes on each plane of the family is doubled (Fig. 2).2

In contrast, when the parity of the nonzero indices is opposite,

the density of lattice planes is doubled with respect to that of a

primitive unit cell, but the density of lattice nodes on each

plane of the family is unchanged. Consequently, the first plane

of the family does not correspond to coprime integers but to

indices having 2 as common factor (Fig. 3).

These geometric considerations can be translated in an

analytical way by simply putting the uvw coordinates of a

lattice node into equation (2). If the value n obtained is

fractional, then the hkl indices chosen to represent the family

of planes are not correct: if n is fractional with denominator p,

with p integer, then there are p � 1 planes between the origin

and what had been assumed to be the first plane of the family.

Consequently, the hkl indices must be multiplied by a factor p.

For example, in the case of Fig. 3, the family of planes indi-

cated as (210) would lead to n = 1
2 when the lattice node 1

2
1
2 0 is

inserted into equation (2), and to n = 3
2 when the lattice node

3
2

1
2 0 is used instead. If the family of lattice planes is indicated as

(420), then the two lattice nodes above give n = 1 and 3,

respectively, when used in equation (2). This analytical

translation of the geometric considerations is useful to analyse

cases which are more difficult to show in a simple two-

dimensional projection. For example, in the case of an

I-centred unit cell, the lattice plane of the family (111) which

passes through lattice node 1
2

1
2

1
2 would give n = 3

2 in equation

(2), meaning that the lattice plane which intersects each axis

on the first node is not the first of the family but the second.

Thus, the correct Miller indices of the family of lattice planes

are (222). In the same way, starting from hypothetical Miller

indices (100), (110) and (111) and inserting the coordinates of

the node 2
3

1
3

1
3 occurring in the obverse setting of a rhombo-

hedral lattice with respect to hexagonal axes, the results are n =

teaching and education
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Figure 2
Part of the (001) section of a lattice whose conventional cell is of type P
(top) or C (bottom), with the traces (solid lines) of (hk0) planes with h
and k having the same parity (h = k = 1 in this figure). The axes and
boundaries of the conventional cell are drawn as dotted lines. Nodes
centring the unit cell in oC are shown in red to emphasize the difference
between the two unit cells. The interplanar distance d(hk0) is the same in
the two lattices, but in oC the density of nodes on each plane of the family
is doubled with respect to oP. The first plane of the family passes through
lattice nodes 100 and 010 in both cases, as well as through lattice node 1

2
1
2 0

in the case of oC, which in this family does not give rise to any additional
plane with respect to oP. The same conclusions are obtained by drawing
any other (hk0) family with the same parity of h and k, like for example
(310) or (150).

Figure 3
Part of the (001) section of a lattice whose conventional cell is of type P
(top) or C (bottom), with the traces (solid lines) of (hk0) planes with h
and k having opposite parity (h = 2, k = 1 in this figure). The same
conventions are used as in Fig. 2. The interplanar distance d(hk0) in oC is
half that in oP, but the density of nodes on each plane of the family is the
same in both lattice types. The first plane of the family indeed cuts the a
axis at 1

2 and passes through lattice node 010 in oP, so that the family of
lattice planes is correctly expressed as (210). In the case of oC, however,
there is an additional plane (red) midway between the origin and the
plane which was first in oP; it cuts the a axis at 1

4 and the b axis at 1
2 , so that

the family of lattice planes is indexed as (420). The same conclusions are
obtained by drawing any other (hk0) family with the opposite parity of h
and k, like for example (320) or (140).

2 These geometric considerations were already present by Friedel (1926) but
applied to the computation of the twin index of twinned crystals [see details
given by Nespolo & Ferraris (2007)], while the effects on the Miller indices
were not taken into account. The use of non-coprime integers for centred unit
cells was proposed by Ungemach (1935) for the rhombohedral lattice and its
generalization was proposed by Donnay (1936) in a somewhat obscure way, so
that the first clear occurrence of this idea can be traced back to a footnote at
p. 450 of the paper by Donnay & Harker (1937).
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4
3, 1 and 2

3, showing that the corresponding lattice planes are the

third, first and third of the families, respectively. The Miller

indices thus have to be modified as (300), (110) and (333).

One immediately sees the relation between the Miller

indices correctly expressed to satisfy equation (2) and the

integral reflection conditions in reciprocal space, for which the

same restrictions on the hkl value of the diffractions occur as

on the Miller indices of the family of lattice planes.

3.1. When non-coprime Miller indices become an artefact:
the Bravais–Friedel–Donnay–Harker law

Friedel (1907) introduced the so-called Bravais law which

establishes a rough proportionality between the frequency of

occurrence of a given face in the morphology of a crystal and

the density of nodes on the lattice planes corresponding to

that face, i.e. having the same Miller indices. This geometric

rule is an approximation introduced to predict the growth

shapes of crystals, where the ranking of an {hkl} form is related

to the thickness of its corresponding layer: the thicker the

layer, the higher the morphological importance of the form. A

number of exceptions remained unexplained, concerning in

particular the absence or low frequency of occurrence of faces

with small Miller indices, and thus high densities of nodes. To

cope with those exceptions, Donnay & Harker (1937) intro-

duced an extension of the Bravais law, today generally known

as the Bravais–Friedel–Donnay–Harker law, which represents

an effort to complement purely reticular considerations with

some atomistic aspects. Unfortunately, this extension was

performed in a rather spurious way, introducing confusion

between the lattice and the structure and leading to an

unnecessary multiplication of Miller indices.

The idea behind the Donnay–Harker extension was to take

into account the influence of screw axes and glide planes in

non-symmorphic space groups on the frequency of occurrence

of the forms. Symmorphic space groups are generated, apart

from the lattice translations, by point-group operations; they

may contain screw rotations and glide reflections too, but

these are not generators, as is instead the case for non-

symmorphic space groups. On the other hand, screw axes and

glide planes in non-symmorphic space groups do represent a

fundamental symmetry characteristic of the structure and do

not depend on the axial setting chosen, although their repre-

sentation obviously does: the Miller indices of a family of

lattice planes cannot depend on the structural symmetry.

Donnay & Harker (1937) made screw axes and glide planes

act on lattice nodes (termed ‘lattice equipoints’) to produce a

separate set of ghost points (termed ‘space group equipoints’)

which, although not being lattice nodes, were treated as such,

leading to an artificial multiplication of the Miller indices. We

have seen that non-coprime Miller indices come from the use

of centred cells, which are by no means an intrinsic feature of

the crystal structure but a convenient choice for the axial

setting. The Bravais–Friedel–Donnay–Harker law is a useful

artefact in that it improves the predictive power of the Bravais

law on the relative importance of crystal faces, but it is still an

artefact. The improvement in the ‘morphological aspect’, as

was called the decreasing sequence of forms, comes from the

indirect consideration of the structural symmetry. Structural

theories on the relative development of crystal faces, like the

PBC (periodic bond chain) theory (Hartman & Perdok, 1955),

were developed later, making this useful artefact outdated.

For example, Sunagawa (2005) has shown that the PBC theory

predicts the correct ‘morphological aspect’ of pyrite, without

the requirement of inconsistently multiplying the Miller

indices of the faces depending on the zonal and serial reflec-

tion conditions, as was proposed by Donnay & Harker (1937)

to explain the observed sequence of forms.

4. Laue indices of Bragg peaks versus Miller indices of
families of lattice planes

The indices of a Bragg reflection from the set of parallel

equidistant planes (hkl) are called Laue indices and are indi-

cated as hkl without parentheses (ITA1). Bragg’s law,

n� ¼ 2dhkl sin �hkl; ð3Þ
includes the order of diffraction n; it is sometimes neglected

but it is of paramount importance. Let us remember that

Bragg’s law is a geometric interpretation, in terms of the

reflection of X-rays by lattice planes, of what is actually a

diffraction phenomenon described by the Laue equations. It is

the positive interference of the X-rays ‘reflected’ by the

various planes of the same family (hkl) that results in a Bragg

peak, bringing the Laue indices hkl. There is thus an obvious

correspondence between the Laue indices hkl and the Miller

indices (hkl). Bragg peaks along a direction of reciprocal space

are characterized by a common factor n which increases with

distance from the reciprocal space origin (position of the

direct beam) and this is precisely the order of diffraction in

equation (3). The expression ‘diffraction from the plane (nh

nk nl)’, which occurs more often than one might imagine, is at

odds with both the definition of Miller indices and Bragg’s law.

In fact, if the Miller indices of a family of planes are (hkl), not

necessarily coprime integers (as we have seen above), they

represent a family whose first plane after the origin of the axes

has intercepts a/h, b/k, c/l. A hypothetical family (nh nk nl)

would have the same orientation but its first plane would have

intercepts a/nh, b/nk, c/nl, which do not pass through any

lattice node. In other words, the hypothetical family (nh nk nl)

would include n � 1 planes out of n which are not reticular

planes (do not pass through any lattice node). On the contrary,

if these were reticular planes, then (hkl) would not be a family

of lattice planes, because it would be composed of only 1/n of

the planes with the same orientation. Therefore, the Laue

indices nh nk nl do not represent the first-order diffraction

from a family (nh nk nl) but the nth order diffraction from the

family (hkl).

5. Geometric derivation of the reflection conditions

Most modern textbooks introduce the reflection conditions in

an analytical way, showing that the structure factor is

systematically zero for some relations between the hkl Laue
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indices of the diffractions. While this is perfectly legitimate

and absolutely correct, from the pedagogical viewpoint it is

questionable as the best way to present the reflection condi-

tions, especially for beginners who may not yet have experi-

ence of diffraction experiments. A geometric approach,

proposed a long time ago by Buerger (1942) but today often

forgotten (although mentioned in ITA2), is preferable in that

it gives a much more concrete image and allows an easy

memorization of the reflection conditions, without the need

for an analytical derivation of the annihilation conditions for

the structure factor. This presentation makes use of notions

and concepts in direct space that the student has already

(hopefully!) mastered and it is easier to understand, in the

same way as the use of the polar lattice is pedagogically useful

when introducing the reciprocal lattice (Nespolo & Souvig-

nier, 2010).

In x2 we have seen that a straightforward relation exists

between the indexing of lattice planes and the integral

reflection conditions, which are purely geometric in nature;

they find their origin in the choice of the axial setting used to

describe the crystal structure and are common to all space

groups, both symmorphic and non-symmorphic. The speciali-

zation of the integral reflection conditions to two- and one-

dimensional sections (i.e. obtained by zeroing one or two

indices) has no structural origin, as shown by the fact that the

use of a primitive non-conventional unit cell would completely

annihilate the integral reflection conditions, including those on

these sections. On the other hand, non-symmorphic space

groups show zonal and/or serial reflection conditions, coming

from generating glide reflections and screw rotations, respec-

tively; they do not disappear if a different unit cell is chosen,

although their expression obviously depends on the axial

setting chosen.

5.1. Zonal reflection conditions

Zonal reflection conditions come from the presence of glide

planes. Fig. 4 shows the effect of an a glide perpendicular to

the [001] direction, through the example of an orbit 2e in a

space group of type Pmma. When the figure is observed in

projection along this same direction, the distinction between

atoms above and below the plane of the drawing is lost so that

in this projection the periodicity along a is apparently halved.

Because of the dual relation between the two spaces, the

opposite is true in reciprocal space, where the periodicity

along a* is apparently doubled when a projection along [001]

is observed. Accordingly, on the plane that is perpendicular to

[001], i.e. the (001)* plane, one position out of two along a*

seems to be missing. Expressed formally, this results in the well

known reflection condition hk0: h = 2n. Obviously, by taking a

b glide instead of an a glide, the reflection conditions become

hk0: k = 2n, and by taking another direction of projection, the

corresponding zonal reflection conditions for h0l and 0kl are

obtained.

The case of a diagonal glide is shown in Fig. 5 for the case of

an n glide perpendicular to [110], which occurs in cubic space

groups (Pn3n and Pm3n, Nos. 222 and 223). The plane of the

projection is (110) and contains the directions [110] and [001].

The glide component is half of the in-plane horizontal direc-

tion, i.e. (a + b)/2, and half of the in-plane vertical direction,

i.e. c/2, so that the glide component is (a + b + c)/2. In the [110]

projection, the periodicity along this direction is apparently

halved. In reciprocal space, the plane perpendicular to [110] is

(110)* and in the projection on this plane the periodicity along

the diagonal, which is h + h + l, is apparently doubled. The

reflection condition for an n glide perpendicular to [110] is
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Figure 4
(Left) Part of the 2e orbit (1

4 0z, 3
4 0z) of a space group of type Pmma (No.

51, standard setting) and (right) its projection on the (001) plane. The
height (z coordinate) is shown as + and �, as is customary in ITA7. No
chirality (‘comma’) is shown on the atoms because the site-symmetry
group of Wyckoff position 2e is mm2. The hatched area on the left-hand
side of the figure is the unit cell shifted by a/4 on an atom, to emphasize
that the orbit has the same translation vectors as the space group (i.e. it is
not an extraordinary orbit). The right-hand side of the figure, obtained by
projection so that all the atoms appear on the plane and no distinction by
height appears, shows that in this projection the additional translation
vector 1

2 00 appears, so that the unit cell seems to be halved along the a
axis.

Figure 5
The effect of an n glide perpendicular to the [110] direction. Atoms on the
opposite side of the glide plane (differentiated by the + and � signs,
indicating the different heights along the [110] direction, as well as by the
opposite handedness) are separated by a vector (a + b + c)/2 in projection
on the (hhl) plane. When observed in projection, the height is lost and an
apparent half-periodicity along the diagonal of the plane is observed. The
same figure applies also to a d glide by simply replacing the factor 2 by 4.
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therefore hhl: 2h + l = 2n. However, because 2h is always an

even number, the condition 2h + l = 2n gives the same result as

l = 2n, and this is the way in which the reflection conditions are

presented in ITA3 and ITA7. If the glide plane is of type d

(which for the chosen orientation occurs in tetragonal and

cubic space groups), the apparent periodicity in direct space is

reduced to one-quarter, and in reciprocal space it is four times

bigger, so that the reflection condition becomes hhl: 2h+l = 4n.

5.2. Serial reflection conditions

Serial reflection conditions come from the presence of

screw axes. Fig. 6 shows the effect of a 41 screw axis parallel to

the [001] direction. When the figure is observed in projection

on this same direction, all the atoms around the axis are

projected onto the axis, so that in this projection the peri-

odicity along c is apparently reduced to one-quarter. Because

of the dual relation between the two spaces, the opposite is

true in reciprocal space, where the periodicity along c* is

apparently four times larger when a projection on [001]* is

observed. Accordingly, three positions out of four along c*

seem to be missing. Expressed formally, this results in the well

known reflection condition 00l: l = 4n. The same geometric

reasoning applies to all the screw axes.

6. Can the lack of symmetry impose restrictions?

A number of recent (and not so recent) textbooks introduce

the concept of crystal system on the basis of the metric rela-

tions of the conventional unit cell, which is incorrect. A crystal

system (shortened wording for crystal-class system) contains a

complete set of geometric crystal classes of space groups

(ITA8). The definition of a crystal system is thus based on the

presence of a minimal set of point symmetry operations that

are common to all the crystals belonging to the same crystal

system. The symmetry of the conventional unit cell may, and

often does, coincide with the holohedry of the crystal, but it

may also be higher, in which case one speaks of accidental

higher metric symmetry, which occurs more frequently than

one might expect (Janner, 2004a,b). While the presence of a

structural symmetry operation does impose restrictions on the

metric of the unit cell, the absence of it cannot impose any

restriction. Thus, in a monoclinic crystal, the presence of a

twofold axis, or of a mirror perpendicular to it (or of both, of

course), imposes the metric restriction of two right angles,

which are chosen as � and � if the crystal is referred to the

conventional b-unique setting. However, these operations do

not have any influence on the value of the third angle (� in the

conventional b-unique setting), which is symmetry un-

restricted. It may take any value, and vary as a function of the

external conditions (temperature T, pressure p), including 90�

as a special case, at least in a certain interval of T and p and

within the standard uncertainty of the experimental determi-

nation. To define a monoclinic crystal as having � 6¼ 90� is

incorrect because no metric restriction can occur as a conse-

quence of the lack of symmetry. Again, to state that in a

monoclinic crystal a 6¼ b 6¼ c is incorrect for the same reasons.

The situation is different if one makes reference to the

lattice, thus making abstraction from the structure. A

specialized metric does promote the lattice to a higher

symmetry, but without increasing the symmetry of the struc-

ture. Because of the possible divergence between lattice

symmetry and structural symmetry, the concept of a Bravais

flock is used in ITA8 to assign space groups (which represent

the structural symmetry) to the Bravais class not affected by

the accidental metric symmetry. However also in this case, the

metric restrictions given in most textbooks are incorrect: they

are too restrictive in some cases and not enough in others. The

metric restrictions on the lattices are in fact much more

complex than those on the structure, because one has to avoid

all special cases, i.e. the specializations of the metric that

promote the lattice symmetry to a higher holohedry. These

specializations have recently been reviewed in great detail by

Grimmer (2015); we give here just one example to emphasize

how misleading are the metric restrictions frequently found in

textbooks.

Let us consider the example of the metric restrictions for a

monoclinic lattice, which are often given as a 6¼ b 6¼ c; � = � =

90�, � 6¼ 90�, expressed in the common b-unique setting. The

condition on the b parameter is unnecessary. In fact, even in

the case of a specialized metric with a = b or with b = c, the

symmetry of the lattice is not promoted to a higher holohedry,

unless further specializations exist too. On the other hand, to

exclude only the 90� for � is not enough. If the cell parameters

define a primitive unit cell and � = cos�1(�a/2c), then the

lattice is actually oB (orthorhombic with a B-centred cell,
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Figure 6
Effect of a 41 screw axis parallel to the c axis. (a) A perspective view,
where t is the full translation. (b) A projection along the c axis; the screw
component is lost. (c) A projection on the (100) or (010) plane. (d) A
projection on the [001] axis. In this last, an apparent periodicity of t/4
occurs.
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which can be transformed to oC or oA by a permutation of the

axes). If the cell parameters define a body-centred unit cell

and � = cos�1(�a/c), then the lattice is actually oC; if a2 + b2 =

c2 and a2 + accos� = b2 or b2 + accos� = a2, then the lattice is

actually hR (rhombohedral); if c2 + 3b2 = 9a2 and c = �3acos�
or a2 + 3b2 = 9c2 and a = �3ccos�, then the lattice is again hR

(rhombohedral) (data from Table 9.4.3.1 in ITA9; unit cells of

type mI, mC, mA and mF are all easily converted into each

other so that the above conditions for mI can be transformed

into the setting of any of the other three types of unit cell; see

also Grimmer, 2015).

It should therefore be evident that, if one wants to give the

metric restrictions for the lattices, the situation is much more

complex than that given in any textbook. On the other hand, if

the metric restrictions are those imposed by the structural

symmetry, any accidentally specialized value which would

increase the symmetry of the lattice should not be excluded.

Therefore, when giving the metric relations imposed by the

symmetry of the crystal, the correct relations are those shown

in Table 2.

7. Conclusions

The time and space devoted to teaching fundamental crys-

tallography in undergraduate programmes, especially in direct

space, has been reduced drastically during the past few

decades and it is still shrinking. One of the consequences is

that some basic aspects are no longer presented, while others

are covered very quickly in an approximate way that often

leads to imprecisions, axiomatic statements and less effective

presentations. This also occurs in textbooks, where the authors

sometimes seem to feel obliged to insert some basic topics

without which the text could be considered incomplete, but

cannot devote enough space to a convincing presentation, so

that the result is quite often less satisfactory than that already

available in older classical textbooks.

We have presented a few examples of problems frequently

and repeatedly seen in modern textbooks and class presen-

tations and we have pointed out how a consistent and correct

presentation can instead be realized by very simple, essentially

geometric, considerations. We hope that this effort may be

useful to avoid mistakes and increase the effectiveness of this

basic part of the crystallography curriculum and contribute to

restoring its charm, today unreasonably considered old fash-

ioned.
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Table 2
Metric restrictions on the crystal system imposed by the symmetry of the
crystal.

Crystal system Metric restrictions

Triclinic None
Monoclinic (b-unique) � = � = 90�

Orthorhombic � = � = � = 90�

Tetragonal a = b; � = � = � = 90�

Trigonal, rhombohedral axes a = b = c; � = � = �
Trigonal and hexagonal, hexagonal axes a = b; � = � = 90�, � = 120�

Cubic a = b = c; � = � = � = 90�
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One imprecise and one incomplete statement in the article by Nespolo [J. Appl.

Cryst. (2015), 48, 1290–1298] are corrected.

In our article (Nespolo, 2015), one imprecise and one

incomplete statement about the conditions for Miller indices

to be relatively prime have been identified, which we correct

hereafter.

Consider the statement on page 1293, after equation (2):

‘When the unit cell is primitive or when the planes of the (hkl)

family are parallel to the face of the unit cell containing the

centring vector, the above condition is consistent with coprime

Miller integers.’ In that sentence, the term ‘the centring vector’

should be replaced by ‘a centring vector’. In the example given

for the oC unit cell in Fig. 1 therein, centring vectors go from

the origin to the lattice nodes 1
2

1
2 0, 1

2
1
2 0, 1

2
1
2 0 and 1

2
1
2 0. These are

all contained in the (001) plane, but only two of them, namely
1
2

1
2 0 and 1

2
1
2 0, are contained in the (110) plane.

On the same page, equation (2),

hxþ kyþ lz ¼ n; ð2Þ

is followed by the statement ‘it should give the first plane of

the family after the origin, in the positive direction, when n =

1’, which should be completed by the condition ‘and n is

minimal’. For example, in the case of the plane (301), all the

ISSN 1600-5767

# 2017 International Union of Crystallography

Figure 1
The (301) family of lattice planes for a primitive unit cell. From bottom to
top of the figure, the planes correspond to n = 0, 1, 2, 3, 4 in equation (2).

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576717006306&domain=pdf&date_stamp=2017-04-27


planes of the family are parallel to the b axis. If the unit cell is

primitive, the three first planes have intercepts on the a and c

axes at x = 1
3, z = 1; x = 2

3 and z = 2; and x = 1 and z = 3,

respectively (Fig. 1). Accordingly, they pass through lattice

nodes 0v1, 0v2 and 1v0 (any integer v), which leads to n = 1, 2

and n = 3 in equation (2). In this case, (301) are the correct

Miller indices. If the unit cell is C centred, however, the first

three planes for the family have intercepts x = 1
6, z = 1

2; x = 1
3,

z = 1; x = 1
2, z = 3

2 (Fig. 2). Accordingly, they pass through lattice

nodes 1
2(v + 1

2)1, 0v1 and 1
2(v + 1

2)0 (any integer v), which leads to

n = 0.5, 1 and n = 1.5, respectively. Because the minimal value

of n is not 1, the Miller indices of the family are not (301) but

(602).
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Figure 2
The same family of lattice planes for a C-centred unit cell. Planes shown
in orange do not exist in a primitive unit cell. If the same Miller indices,
(301), are used, then these planes would correspond to half-integer values
of n in equation (2) and the one leading to n = 1 is not the first plane of the
family but the second one, contrary to the definition of Miller indices.
Accordingly, from bottom to top of the figure, the planes would
correspond to n = 0, 1

2, 1, 3
2, 2, 5

2, 3, 7
2, 4 in equation (2). By adopting the

correct non-relatively prime indices (602), the first plane of the family
does correspond again to n = 1 in equation (2); from bottom to top of the
figure, the planes correspond now to n = 0, 1, 2, 3, 4, 5, 6, 7, 8. Figures
drawn with VESTA (Momma & Izumi, 2011).
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