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The mutual penetration of electron densities between two interacting molecules

complicates the computation of an accurate electrostatic interaction energy

based on a pseudo-atom representation of electron densities. The numerical

exact potential and multipole moment (nEP/MM) method is time-consuming

since it performs a 3D integration to obtain the electrostatic energy at short

interaction distances. Nguyen et al. [(2018), Acta Cryst. A74, 524–536] recently

reported a fully analytical computation of the electrostatic interaction energy

(aEP/MM). This method performs much faster than nEP/MM (up to two orders

of magnitude) and remains highly accurate. A new program library, Charger,

contains an implementation of the aEP/MM method. Charger has been

incorporated into the MoProViewer software. Benchmark tests on a series of

small molecules containing only C, H, N and O atoms show the efficiency of

Charger in terms of execution time and accuracy. Charger is also powerful in a

study of electrostatic symbiosis between a protein and a ligand. It determines

reliable protein–ligand interaction energies even when both contain S atoms. It

easily estimates the individual contribution of every residue to the total protein–

ligand electrostatic binding energy. Glutathione transferase (GST) in complex

with a benzophenone ligand was studied due to the availability of both structural

and thermodynamic data. The resulting analysis highlights not only the residues

that stabilize the ligand but also those that hinder ligand binding from an

electrostatic point of view. This offers new perspectives in the search for

mutations to improve the interaction between the two partners. A proposed

mutation would improve ligand binding to GST by removing an electrostatic

obstacle, rather than by the traditional increase in the number of favourable

contacts.

1. Introduction

An investigation of intermolecular interactions involves an

intelligent examination of electrostatic interaction energy.

One major obstacle in such energy calculations is how to

obtain an accurate representation of the total charge distri-

butions of interacting molecules. They are normally associated

with theoretical calculation methods such as density-

functional theory (DFT).

Full DFT calculations on large systems take a prohibitive

amount of time. Approximations such as the kernel energy

method give comparable results much faster, as they scale

better with the number of atoms concerned (Huang et al.,

2005; Mandal et al., 2017). This method has successfully been

applied to many different biological systems (see Massa et al.,

2019, and references therein).

Charge-density determinations from ultra-high resolution

X-ray crystallography provide an experimental counterpart

to theoretical studies. The Hansen and Coppens multipolar

pseudo-atom model properly represents an electron-density
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distribution based on an X-ray diffraction experiment

(Hansen & Coppens, 1978). A good model necessitates high-

quality crystals, which are nearly impossible to produce in

some fields. Biomacromolecular crystallography in particular

has this problem. A compromise solution comes from the fact

that the multipolar parameters of chemically similar atoms are

similar. One can reconstruct protein electron density with ease

from building blocks (i.e. transferable parameters) from small

molecules.

A parameter transfer from a database to a protein structure

takes less than a minute on a modern computer. Transferable

multipolar parameter databases draw from experimental (for

example ELMAM2; Domagała et al., 2012) electron densities,

augmented with polarizabilities (Leduc, 2019; Leduc et al.,

2019), or from theoretical electron densities [for example

INVARIOM (Dittrich et al., 2004) and UBDB (Dominiak et

al., 2007)].

Missing atom types pose an obstacle to database transfers.

Similar atom types can replace them, or (particularly for

theoretical databanks) one can obtain the charge density by an

additional DFT calculation. Kumar et al. (2019) addressed this

problem to some extent by extending UBDB with atom types

commonly found in drug molecules.

Calculating the electrostatic energy (Eelec) remains a chal-

lenge even with a fitting electron-density model to hand,

largely because of the overlap between electron clouds

(Volkov et al., 2004). The challenge of computation coincides

with the great interest of chemists, since atoms with over-

lapping electron densities are close enough to form chemically

meaningful strong contacts.

One should first divert ones attention to a simpler case:

atoms that are further away and have a negligible density

overlap. They can nevertheless contribute significantly to

interaction energies, and more so when they carry consider-

able charge. A point-charge approximation can describe this

kind of interaction well, but the Buckingham approximation

(Buckingham, 1959) performs better as it includes multipole

moments (MM) along with point charges. These approxima-

tions also alleviate the time-cost concerns associated with

large biomolecular systems.

Going back to the more relevant case of atoms that are

close together, Volkov et al. (2004) developed the exact

potential (EP) method for the multipolar electron-density

model. EP involves a complete numerical 3D integration of

the product between the density of one atom and the potential

of another atom, and thus handles overlap density directly,

albeit slowly. A union of the slow EP method at short distance

and the fast MM approximation at long distance gives rise to

the precise and reasonably fast EP/MM method (Volkov et al.,

2004). Fournier et al. (2009) implemented this method in the

VMoPro program in MoProSuite.

To improve the calculation speed further, Nguyen et al.

(2018) proposed an analytical method to evaluate electrostatic

interaction energies between charge densities for the Hansen–

Coppens model. This method is largely based on previous

mathematical developments by Jones and Weatherford (see

Jones, 1993 and references therein) and Löwdin (1956), and

substitutes the numerical EP integrals with analytical ones. We

follow their lead in renaming the original method using

numerical integration nEP/MM and calling the newer method

using analytical integration aEP/MM.

Nguyen et al. (2018) promise high accuracy, with a calcu-

lation speed improved by two orders of magnitude. Nguyen

and Volkov further analysed the precision of aEP/MM and

proposed a more precise Fourier-based method in a newer

paper (Nguyen & Volkov, 2019), albeit at a certain time cost.

They have also recently proposed, in collaboration with P.

Macchi, a molecular multipolar moments method that is easily

applicable to crystals, as well as corrections for errors in Ewald

summations due to density overlap (Nguyen et al., 2020),

following in the footsteps of Bojarowski et al. (2016). They

tested all of the methods on small molecules and oligopeptide

benchmark systems.

We have adapted the aEP/MMmethod to create a new code

library called Charger. It is an independent implementation of

the same method with several enhancements geared towards

calculation speed. Our molecular-visualization and electron-

density exploration software MoProViewer (Guillot et al.,

2014) accommodates a simple user interface to Charger. It

includes a special module for biomacromolecular structure

exploration.

Various benchmark systems containing homodimers and

heterodimers derived from crystal structures served as the first

tests for Charger. The molecules contained within these

systems ranged from water and methanol to Leu-enkephalin

and a dodecapeptide, all containing only C, H, N and O atoms.

Dominiak et al. (2009) have already extensively demon-

strated that a model from transferred parameters is indeed

useful when investigating protein–ligand interactions. Speci-

fically, they used the nEP/MM method to calculate electro-

static interaction energies between a neuraminidase protein

and a wide range of its inhibitors.

With this in mind, we wanted to give Charger a greater

challenge: glutathione transferase (GST), a 2 � 240-residue

dimeric protein. Schwartz et al. (2018) determined four

structures of this enzyme, each containing a different benzo-

phenone ligand in the active site. They also measured thermal

shifts in the presence of these same ligands, which one can use

to determine protein–ligand binding constants and therefore

relate to interaction energies (Cimmperman et al., 2008).

These ligands provide a textbook example to gauge our

method: chemically similar, they form hydrogen bonds and

similar electrostatic interactions with the host protein. The

protein–ligand complexes exhibit distinct thermal shifts for

each ligand.

Trying to improve protein–ligand binding is another direc-

tion in which the quality of Charger calculations can be

determined. A typical approach seeks to increase pertinent

contacts between the protein and ligand (Thapa & Ragha-

vachari, 2019). The biomacromolecular module connected to

Charger can point to residues that hinder ligand binding by

poisoning the electrostatic environment of the active site. We

pursued an in silico inquiry into this topic using the GST–

benzophenone system.
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2. Methods

2.1. Charger

Calculations based on quantum chemistry demand the use

of computational algorithms. Quantum chemistry often

models the world as electron functions that make up orbitals

that compose atoms (along with nuclei) that constitute

molecules. Computer programs obediently undertake the

inhuman drudge of going over the same calculation repeat-

edly. Our invention, Charger, partakes in this tradition.

Charger is a code library written in C that computes the

electrostatic interaction energy between molecules. Charger

works with the Hansen & Coppens (1978) charge-density

model,

�atomðrÞ ¼ Z�ðrÞ þ Ncore�coreðrÞ þ Pval�
3�valenceð�; rÞ

þ Plmax

l¼0

Rlð�0; rÞ�03
Pl

m¼�l

Plmdlmð�; ’Þ: ð1Þ

This model contains a point-charge nucleus (the first term),

two spherical terms and a multipolar term for the electron

density of each atom (defined in more detail in the supporting

information). Charger has means of calculating (i) the elec-

trostatic energy (E = qAqB/r) of a pair of point charges, (ii) the

exact electrostatic potential (EP, �) from a spherical or

multipolar density according to Jones (1993), (iii) the energy

of a point charge in a potential field [E = qA�B(rA)] and (iv)

the energy of two interacting electron-density (�) distribu-

tions,

E ¼
Z Z

�AðrAÞ�BðrBÞ
jrA � rBj

drA drB: ð2Þ

(All equations use atomic units.) Charger employs Löwdin’s

�-function (Löwdin, 1956) to compute this last term when the

electron density is expressed as a sum of Slater functions,

according to the method proposed by Nguyen et al. (2018).

They dubbed their method ‘analytical exact potential’ (aEP),

as opposed to the ‘numerical exact potential’ (nEP) method

proposed by Volkov, Koritsanszky and Coppens in 2004

(Volkov et al., 2004).

At short distances, one can calculate the energy using

Charger as the sum of the following terms:

ETotal ¼ Enn þ Ens þ Enm þ Ess þ Esm þ Emm: ð3Þ
The first term represents the nucleus–nucleus energy Enn (for

point chargesZ of two nuclei, A and B, separated by a distance

d),

Enn ¼ ZAZB=d: ð4Þ
Two nucleus–electron energy terms Ens and Enm follow [for a

point charge ZA in a spherical �B(d) or multipolar electric

potential �B(d)dlm(�A, ’A)],

Ens ¼ ZA�BðdÞ; ð5Þ

Enm ¼ ZA�BðdÞdlmð�A’AÞ: ð6Þ
The remaining three electron–electron energy terms are Ess,

Esm and Emm (two interacting electron-density distributions,

either spherical or multipolar, as defined in the supporting

information).

A faster calculation at long distances comes from the

substitution of the nuclear and spherical electron terms in the

Hansen–Coppens model with a point charge, in the spirit of

the Buckingham approximation (Buckingham, 1959). For a

pair of interacting atoms at a long distance, we calculate the

following sum,

EPseudo-Buckingham ¼ Ecc þ Ecm þ Emm: ð7Þ
The first term is a simple point-charge energy similar to Enn,

Ecc ¼ qAqB=d; ð8Þ
with the charges q of the respective atoms; these charges are

defined in the supporting information. It substitutes the Enn +

Ens + Ess terms in (3). The point-multipolar term Ecm replaces

the Enm + Esm terms. It is calculated similarly to the Enm term,

after substituting z with q,

Ecm ¼ qA�BðdÞdlmð�A; ’AÞ: ð9Þ
The last term is the same multipolar–multipolar term as in (3)

(Emm).

The terms Ecc and Ecm are similar in nature to the terms Enn

and Enm. This allows the repurposing of the existing code for a

new goal. We call this the pseudo-Buckingham approximation,

since it does not involve an evaluation of tensor products, as

Buckingham proposed. Nevertheless, the Emm term involves a

limited number of computations because the spherical

harmonic functions underlying multipoles are orthonormal.

It is common to refer to the Buckingham approximation as

multipolar moments (MM) in the literature. We therefore

name our combined method analytical exact potential/pseudo-

multipolar moments (aEP/pMM). The program library

Charger provides the functions to calculate energy using both

aEP and pMM: library users have the freedom to choose the

threshold distances to use the former or the latter.

One important goal of the Charger library is calculation

speed. A sizeable calculation speedup emerges by excluding

very long distance multipolar terms. Charger can use a user-

adjustable cutoff scheme based on distances and multipole

levels (l).

We established two different cutoff schemes (for ‘precise’

and ‘rapid’ calculations) based on test calculations. These test

calculations revolved around typically high multipolar popu-

lations: Plm = 0.3 e. The chosen cutoff distances rest on indi-

vidual multipole–multipole interaction energies for all

possible pairs of large multipoles from C and H atoms.

We chose the ‘precise’ cutoffs as those (rounded-up)

distances for which the calculated interaction energy is

inferior to 5 cal mol�1 (Table 1). This means that in an

extreme case of very high multipolar populations, the error

due to each excluded multipolar term should be lower than

5 cal mol�1. The error is generally much lower than this in

practice.

The ‘rapid’ scheme cuts deeper: no multipole–multipole

interactions are calculated beyond 15 Å. The two cutoff

research papers
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schemes share some cutoff criteria concerning high-level

multipoles (Table 1).

We further develop the theoretical background behind

these calculations in the supporting information. We have

made the aEP/pMM method available in the form of code

through the Charger library and as a ready-made tool to

explore electrostatic interaction energy within MoProViewer,

our flagship molecular-visualization program (Guillot et al.,

2014).

2.2. Applying Charger to peptides and proteins

The ultimate proof of a method is in how broad its appli-

cations are. One could study many chemical systems with

Charger, but our interest lies primarily in the biochemical and

biostructural domain. We started with several small bench-

mark systems, and proceeded to an exploration of interactions

between a protein and several ligands forming complexes of

known structure.

We first benchmarked Charger on dimeric systems derived

from crystal structures following the lead of Nguyen et al.

(2018). These systems contained water, glycine, 2-butanone,

N,N-dimethylacetamide, Leu-enkephalin, nonapeptide, deca-

peptide and dodecapeptide molecules. These benchmarks give

some points of comparison between Charger and the code

integrated in the XDPROP program. Leu-enkephalin is an

opioid neurotransmitter pentapeptide. The nona-, deca- and

dodecapeptides consist of leucine and 2-methylalanine resi-

dues capped with t-butoxycarbonyl (N-cap) and methyl (O-

cap) groups. Leu-enkephalin and these peptides contain the C,

H, O and N atom types often found in biomacromolecules.

The ELMAM2 database does not contain four atom types

for 6–8 atoms in the nona-, deca- and dodecapeptides,

depending on the peptide composition; their electron density

was approximated as spherical (and neutral before application

of the electroneutrality constraint). In addition, for compar-

ison purposes, we used the AMBER point-charge model on

several benchmark systems for which database transfer was

possible. Charger calculated electrostatic interaction energies

based on these AMBER models as well.

We tested Charger further on a larger system: a protein–

ligand complex with published experimental structural and

thermodynamic data. The glutathione transferase Omega 3S

from Trametes versicolor (TvGSTO3S) is an intriguing model

because crystal structures of this 240-residue enzyme have

recently been obtained in complex with various hydro-

xybenzophenone inhibitors (HBPs). Schwartz et al. (2018)

used thermal shift assays to evaluate the thermal stabilization

of TvGSTO3S upon binding HBPs.

The studied hydroxybenzophenones have various (in

number and position) hydroxyl groups on both phenyl rings

(Table 2). Of the eight HBPs assessed, Schwartz and cowor-

kers obtained crystal structures of four TvGSTO3S–HBP

complexes, which we analysed with Charger (PDB entries

6f66, 6f67, 6f68 and 6f69).

These protein structures originate from the Protein Data

Bank. The PDB files required preparation: erasure of the

C-terminal His tag (which is not present in the native form of

the protein) and the addition of three N-terminal missing

residues (methionine–serine–serine) using the Builder tool in

PyMOL (Schrödinger). We used the WHATIF web server

(Hooft et al., 1996) to ascertain the H-atom positions that form

the most optimal hydrogen–bonding network in the protein

structure. This procedure is agnostic to any ligands, so we used

MoPro to add missing H atoms in ligand molecules (Jelsch et

al., 2005).

A manual search for prospective protein–ligand hydrogen

bonds followed, involving a visual inspection of protein resi-

dues with at least one atom within 5 Å of any atom of the

ligand. The H-atom positions of these residues and ligands

were adjusted manually where deemed necessary in order to

maximize the number and the strength of hydrogen bonds. We

converted the structure into aMoPro-compatible format using

Import2MoPro (Jelsch et al., 2005).

We developed a multipolar database-transfer tool inside

MoProViewer (Guillot et al., 2014). This tool has an extension

for automatic parameter transfer onto protein structures with

appropriate charge assignment (+1 for arginine and lysine, �1

for aspartate and glutamate, 0 for others; there were no doubly

protonated histidine residues; all atoms of a charged residue
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Table 1
Cutoffs used in Charger.

Charger skips over certain pairs of multipoles at long distance, making the calculation more robust and faster. We propose two cutoff schemes: one that gives
precise results (MoProViewer default) and another that gives rapid results. Some criteria are common to both cutoff schemes. The precise cutoffs represent
(rounded-up) distances for which the calculated interaction energy between a pair of multipoles (stated in the left column, both populations Plm = 0.3) is inferior to
5 cal mol�1. The rapid scheme cuts all multipole–multipole interactions calculated beyond 15 Å, a distance chosen as reasonable and proven to be so in subsequent
calculations.

Multipoles Cutoff for precise calculations (Å) Cutoff for rapid calculations (Å)

Dipole � dipole 40
15Dipole � quadrupole 20

Dipole � octupole, quadrupole � quadrupole 18

Dipole � hexadecapole, quadrupole � octupole 14
Quadrupole � hexadecapole, octupole � octupole,
octupole � hexadecapole

12

Hexadecapole � hexadecapole 10

electronic reprint



share the added charge equally). This new tool transferred

experimental multipolar electron-density parameters from the

ELMAM2 database (Domagała et al., 2012) to the treated

protein structures.

Not so long ago, one could not go beyond the described

database transfer. In a recent article, we demonstrated that the

transferred electron density complemented with theoretical

polarizabilities gives access to polarization energies (Leduc et

al., 2019). We built a custom database of theoretical average

atomic polarizabilities for ELMAM atoms found in HBPs and

proteins. Our computation of the electrostatic interaction and

polarization energies of the TvGSTO3S–HBP interactions

followed the method described by T. Leduc in his PhD thesis

(Leduc, 2019).

After the transfer of atom polarizabilities from this data-

base, the MoProViewer polarization module served to

compute dipoles induced on the ligand by residues near to the

ligand and dipoles induced by the ligand on the same residues

(until the self-consistency criterion was satisfied). The residues

selected for this calculation are at most 3.5 Å away from the

ligand (distance between centres of geometry, value selected

by visual inspection). They include most of the active site, but

not small, negligible contributions of residues that are further

away that would slow down the polarization calculation.

With TvGSTO3S–benzophenone charge densities in hand,

we could proceed to energy calculations. TvGSTO3S is a

homodimeric enzyme, the crystal structure of which contains

two independent monomers, each of which binds a benzo-

phenone and a glutathione ligand. Charger calculated total

electrostatic interaction and polarization energies between the

two subunits and any available ligands. The calculations cover

all possible pairs (first monomer–first ligand, first monomer–

second ligand etc.). We repeated these calculations with the

VMoPro program fromMoProSuite to compare the speed and

accuracy of our new algorithm based on analytical EP/MM

with the established numerical EP/MM method (Jelsch et al.,

2005).

Another reason for interest in the TvGSTO3S protein

systems are calculations with S atoms. The benchmark systems

from Nguyen et al. (2018) contain only CHNO atoms. Since

their systems do not contain S atoms, the results do not fully

confirm the applicability of analytical EP/MM to protein

systems. TvGSTO3S contains several cysteine and methionine

residues, and the glutathione ligand also contains an S atom.

This allows us to draw more compelling conclusions on the

applicability of the method.

We furthermore investigated the degree to which individual

amino-acid residues contribute to the electrostatic interaction

energy of overall protein–ligand binding. Trying to explain

these results prompted us to form presumptive hypotheses. We

constructed an in silico mutant as a first step towards the

experimental verification of one such hypothesis: Arg171 had

an unfavourable effect with some ligands.

We chose to mutate Arg171 to glutamine in the structure

with PDB code 6f68 (Table 2). PyMOL served to generate the

Arg171Gln mutation. The glutamine rotamer was chosen so

that its side chain occupies a spatial position similar to that of

arginine. We transferred the electron-density parameters to

the resulting mutant structure and performed the same

calculations as described above for the wild-type structures.

In all of these calculations with Charger, we applied

analytical EP for all atom pairs that are closer than 5 Å apart
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1296 Vedran Vuković et al. � Charger Acta Cryst. (2021). D77, 1292–1304

Table 2
Thermodynamic results obtained for TvGSTO3S with hydroxybenzophenone inhibitors by thermal shift assays (Schwartz et al., 2018).

The PDB codes for the crystal structures of the TvGSTO3S–HBP complexes are indicated along with the experimental thermal shifts (�Td). The colouring of the
carbon skeletons of the ligands reflects the colouring in the graphs and structure models throughout this paper.

Compound Structure �Td (K) PDB code

2,4,40-Trihydroxybenzophenone (2,4,40-HBP) 2.9 6f68

3,4-Dihydroxybenzophenone (3,4-HBP) 4.4 6f67

2,3,4-Trihydroxybenzophenone (2,3,4-HBP) 5.0 6f69

2,4-Dihydroxybenzophenone (2,4-HBP) 5.7 6f66

electronic reprint



and pseudo-Buckingham multipolar moments calculation for

all remaining atom pairs. We used both cutoff schemes from

Table 1 to determine their quality empirically.

3. Results and discussion

3.1. Charger user interface

We integrated the Charger library into MoProViewer and

created a user-friendly interface for it. MoProViewer facil-

itates molecule visualization and atom selection, while the

interface handles parameter reorganization to a form under-

standable by Charger.

The options in the Charger interface, such as the selection of

atomic constituents (for example nucleus, core, valence,

multipolar . . . ), mirror those already available within the

VMoPro program of MoProSuite. The user can select any set

of atomic constituents from the Hansen–Coppens multipolar

atom formalism (i.e. individual terms from equation 1), which

then comprise the density used in energy calculations. As an

example, this enables an inquiry into the interaction of the

total protein density with ligand dipoles.

Furthermore, the Charger interface in MoProViewer allows

control over the Buckingham (MM) domain threshold as a

fixed distance or a threshold that differs from the sum of van

der Waals radii of current atom pairs by a certain distance. The

interface also handles the choice of multipolar cutoffs at very

long distances, with the ‘precise’ cutoff criteria (Table 1) set as

a default for interaction energy calculations.

We further designed a Charger-based calculation module in

MoProViewer to provide more insight into protein–ligand

interactions. It estimates the electrostatic interaction energy

contributions of individual residues to the protein–ligand

interaction energy. It automatically selects residues one at a

time and calls Charger to calculate residue–ligand energies. It

is conceivable to use this tool to estimate pertinent amino

acids at the interface between two proteins. All of the para-

meters that apply to a normal Charger calculation (Buck-

ingham threshold, multipole-multipole cutoffs, atom

composition) apply here as well.

Behind the scenes, the program library Charger takes as

input molecular-structure and electron-density information

through MoProViewer or some other interface. The electron

density comes mostly from atomic tables describing elec-

trically neutral and spherical atoms, along with some multi-

polar functions derived empirically to describe nonspherical

density.

Once the molecular structure and its electron-density model

are in place, Charger calculates the electrostatic interaction

energy between any two groups of atoms, be it a protein and a

ligand, one amino-acid residue and another, two discrete

metal–ligand complexes, or even two ligands attached to the

same metal centre. It skips unnecessary calculations: those

that result in zero because of a fundamental theoretical reason

such as symmetry or orthogonality of multipoles.

3.2. Charger performance

The first major point to discuss is the place of Charger in the

universe of electrostatic interaction energy calculations. Its

method approaches the core problem from a different

perspective (analytical rather than numerical integration). It

should therefore give similar results as other (numerical)

methods that try to compute the same quantities. The chal-

lenges posed are many, from small molecules to large protein–

ligand complexes. Charger promises faster calculation in all of

these cases: a claim that we scrutinize after dealing with

calculation accuracy.

We tested the analytical exact potential/pseudo-multipolar

moments (aEP/pMM) method accuracy of Charger against the

established numerical nEP/MM method available in VMoPro.

In the case of benchmark molecules, we also compared it with

available literature data (Nguyen et al., 2018).

The energy results for benchmark calculations are very

similar for the standard nEP/MM and our aEP/pMM method

(Fig. 1, Table 3 and Supplementary Table S1). The differences

are within 0.2 kcal mol�1 for the benchmark dimers, and are

presumably due to numerical integration errors in the nEP/

MMmethod. The energy values are also largely comparable to

those available from Nguyen, Kisiel and Volkov (the aEP/MM

method), despite the fact that our calculations relied on

electron-density models with a different set of multipolar

parameters. The largest relative differences come from dimers

with an interaction energy value of�10 kcal mol�1, which one

would expect from significantly different underlying models.

Furthermore, Charger calculations using AMBER03 charges

(Duan et al., 2003) as spherical valence charges in the context

of a Hansen–Coppens model agree well for almost all tested

dimers (Table 3 and Supplementary Table S2). These results
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Figure 1
Bland–Altman plot to assess the difference between Charger electrostatic
interaction energy calculations and those available from Nguyen et al.
(2018) on benchmark systems. It depicts the difference in results between
Charger–aEP/pMM (precise cutoff reported in Table 1) and the literature
reference (XDPROP–aEP/MM, used as a reference: �E = 0, dotted grey
line) as a function of the magnitude of results. Emean refers to the average
value between the XDPROP and Charger results. Sigmas refer to
standard deviations of �E values. The values from two Leu-enkephalin
and two nonapeptide dimers were omitted for the reasons explained in
the fourth and fifth footnotes to Supplementary Table S1.
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are comparable to those of Kumar et al. (2014), who

performed an in-depth comparison between AMBER,

Hansen–Coppens and several other models on the S66 and

JSCH-2005 data sets. However, the agreement is not so good

when using AMBER charges as point charges, which yield

much lower energy values due to the missing penetration

energy.

Calculation times for the aEP/MM and aEP/pMM methods

are also of the same order of magnitude (Supplementary Table

S3). Charger appears faster at first glance, particularly for

small systems with many close atoms. A test under exactly the

same conditions (same processor and molecular model) is

needed before we can draw a more convincing conclusion. A

discussion on calculation speed comparison between aEP/

pMM and nEP/MM is given below.

We wanted to establish whether the results of the aEP/pMM

method in Charger and the nEP/MM method from VMoPro

are comparable. We used the same benchmark dimer energies

(Supplementary Table S1) along with those between gluta-

thione transferase (GST) and its glutathione and hydroxy-

benzophenone ligands (electrostatic and electrostatic +

polarization energies are given in Supplementary Tables S4

and S5, respectively).

Fig. 2 presents a Bland–Altman plot of all of these energies,

using nEP/MM energies from VMoPro as a reference. The y

axis presents the difference between aEP/pMM and nEP/MM

results, while the x axis contains the average of the two. The

graph thus presents the difference in results between the two

methods as a function of the magnitude of the energy results.

It gives a feeling for how different the two methods are for

large or small interaction energies (the results of both

methods).

Results are on average below the reference VMoPro–nEP/

MM method (by 0.02 kcal mol�1 for ‘precise’ and

0.06 kcal mol�1 for ‘rapid’ calculations) and most fall within

two standard deviations (�0.39 kcal mol�1 for ‘precise’ and

�0.60 kcal mol�1 for ‘rapid’ calculations). Rapid calculations

give values that are slightly more dissimilar, but are sometimes

much closer to the mark.

Concerning the accuracy of the values, there is no direct

comparison between aEP/pMM and the external methods

here. Leduc et al. (2019) compared the nEP/MM method with

symmetry-adapted perturbation theory (SAPT) energies

obtained from high-level theoretical calculations on the S66x8

set (containing 66 small-molecule dimers at eight different

distances). The correlation was strong (R2 = 97.0%, slope 1.05;

intercept set to zero) without adding further empirical para-

meters. The r.m.s.d. for the whole data set was estimated as

1.4 kcal mol�1. Taken together with the comparison between

aEP/pMM and nEP/MM, one should report the energy values

in kcal mol�1 up to the first decimal point, while taking care

not to overinterpret small differences in estimated energies.

On the other hand, the availability of the two independent

protein monomers provides some insights into the variability

of the computed energy due to the 3D structure itself. The

relative difference �|�E|/�|hEi| of the ligand/glutathione

energy values in Supplementary Table S5 is typically 20%.
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Table 3
Electrostatic interaction energies of glycine� � �glycine dimers (in kcal mol–1) for interactions in the benchmark glycine system.

� refers to relative discrepancy, with the Charger precise values as the reference.

Program Calculation Gly1 Gly2 Gly3 Gly4 Gly5 Gly6

Charger Precise �27.9 �7.2 �19.8 �35.7 10.1 �5.5
Charger Rapid �27.9 �7.2 �19.8 �35.7 10.1 �5.5
VMoPro nEP/MM �27.8 �7.3 �19.8 �35.9 10.1 �5.6
XDPROP Nguyen, Kisiel & Volkov paper (NKV) �27.7 �7.0 �20.9 �39.1 11.1 �5.6
Charger AMBER spherical charges (Pval = Q � Nval) �23.2 �8.9 �16.7 �30.7 3.8 �4.5
Charger AMBER point charges �12.0 �0.4 �11.7 �18.5 6.7 �2.3

�(NKV) (%) 0.7 2.9 �5.3 �8.7 �9.0 �1.8
�(AMBER spherical charges) (%) 20 �19 19 16 166 22
�(AMBER point charges) (%) 133 1700 69 93 51 139

Figure 2
Bland–Altman plot to assess the accuracy of Charger electrostatic
interaction energy calculations. It depicts the difference in results
between the new methods (Charger–aEP/pMM, rapid/precise) and an
old method (VMoPro–nEP/MM, used as a reference:�E = 0, dotted grey
line) as a function of the magnitude of the results. Emean refers to the
average value between the VMoPro and Charger results. Sigmas refer to
standard deviations of �E values for the respective calculations. The
graph contains energies from benchmark dimers (in squares) and GST–
HBP interaction calculations (in circles, polarized density; others,
nonpolarized density). The latter interaction energies include electro-
static and electrostatic + polarization energies. The inset magnifies the
area around the origin for better assessment of the points clustered in this
region. ‘Precise’ and ‘rapid’ refer to cutoff criteria as reported in Table 1.
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The variability of electrostatic properties obtained by the

use of different pseudoatom multipolar databases was verified

by Bąk et al. (2011). The electrostatic energies Eelec of crys-

tallographic dimers for a series of amino acids and dipeptides

were computed using charge densities transferred from the

ELMAM2, INVARIOM and UBDB electron-density data-

bases and were complemented by first-principles calculations

(MP2 or DZP). The correlation coefficient of the Eelec values

from the different calculations was in the range 0.79–0.99 and

the observed relative difference �|�E|/�|hEi| was about 24%
for energy values issued from the three databases.

The GST structure contains one cysteine and several

methionine residues, and the glutathione ligand is a tripeptide

(l-glutamyl-l-cysteinylglycine). All of these moieties contain

S atoms. The aEP/MMmethod has not been tested on S atoms

to the best of our knowledge (Nguyen et al., 2018; Nguyen &

Volkov, 2019). Fig. 2 shows the absolute discrepancies between

the VMoPro–nEP/MM and Charger–aEP/pMM results, all of

which are lower than 1 kcal mol�1. The largest differences

come from calculations with the largest results (over

150 kcal mol�1), corresponding to relative differences of

about 1%. These observed differences are attributable to the

differences in the methods used to computes these energies. In

addition, these results show that Charger (and aEP in general)

appears to be suitable for calculations with the CHNOS atoms

found in protein structures.

Supplementary Tables S3 and S6 contain the wall-clock

times required to calculate all of the interaction energies

described thus far on an Intel Core i7-8700 (3.20 GHz)

processor. We estimate a heavy computation load from the

amount of close atom pairs in the calculation, since atoms that

are close together elicit the more time-consuming aEP or nEP

calculation. Calculation speedup in Charger portrayed as a

function of close atom pairs (less than 5 Å apart) is shown in

Fig. 3 for GST–ligand dimers and in Supplementary Fig. S1 for

all examined dimers.

We observe a significant (30–80-fold on average) increase in

the speed of Charger analytical calculations compared with

VMoPro numerical integration for GST–ligand dimers. In the

case of benchmark systems, the improvement is even larger

(up to 150–200-fold). This improvement increases with the

number of close atom pairs in the calculation. Closer atoms

require more dedication to calculate all interaction integrals,

and this afflicts the VMoPro–nEP/MM computational time

much more severely.

This does not hold true when there are no close atom pairs.

Calculating the interaction energy between a GST monomer

and the hydroxybenzophenone ligand located in the binding

site of the other monomer takes longer for Charger (Supple-

mentary Table S6). In this case, VMoPro is faster (up to ten

times, or 1–3 s in real terms), probably because it includes a

proper implementation of the Buckingham potential and

Charger includes a pseudo-Buckingham approach.

One could therefore imagine that VMoPro would be faster

even when the ligand has few close interactions (i.e. few close

pairs of atoms) and many distant interactions. The GST

monomer and the glutathione ligand from the binding site of

the other monomer provide such a case: there are as few as six

close atom pairs per 10 000. Here, Charger is already 4.5

to 15 times faster (precise/rapid calculation) than VMoPro–

nEP/MM because the analytical calculation for close atom

pairs is preponderant and is much faster than numerical

calculation.

When comparing cutoffs, ‘rapid’ calculations with a more

severe threshold (15 Å for low-order multipoles) are about

20% faster for small systems with many atoms in close contact,

such as Leu-enkephalin dimers (77 � 77 atoms; Supplemen-

tary Fig. S2). Larger systems with few or zero atoms in close

contact run 1.5–3 times faster (GST monomer with benzo-

phenones, 3706 � 26 or 27 atoms, or with glutathione, 3706 �
36 atoms; or a dimer with twice as many atoms).

‘Rapid’ calculation does not suffer from a large loss of

accuracy (Fig. 2). Using our processor, the saved time in real

terms amounts to a tenth of a second for small systems and

between 2 and 11 s for larger systems. The benefits of using a

15 Å threshold for single-point calculations on small to mid-

size proteins are modest, but a large-scale calculation (larger

protein, database search) would profit significantly.

MoProViewer allows users to select two groups of inter-

acting atoms for energy computation. To explore the energy

contributions of individual amino-acid residues to the overall

protein monomer–ligand interaction energy, MoProViewer

silently selects each residue and then uses Charger to compute

its interaction energy with the chosen ligand. This feature has

a very small overhead of 1% in computation time compared

with calculating the total energy between the ligand and a

whole monomer.

It is possible to verify these individual residue results with

the VMoPro–nEP/MM method. It already has the capacity to

calculate several interaction energies arising from multiple

atom selections within one structure. Accessing this capability
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Figure 3
Computation speed enhancement. Improvement in Charger calculation
speed compared with VMoPro–EP/MM. The graph focuses only on data
from protein–ligand systems, which have few close atom pairs. The x axis
represents the proportion of close atom pairs (in promille, %), i.e. the
number of atoms closer than 5 Å apart divided by the number of all atom
pairs. Precise and rapid cutoff criteria are noted in Table 1.
Supplementary Fig. S1 shows the full graph with protein–ligand and
benchmark calculations.
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inMoProViewer requires implementing a function to generate

the appropriate VMoPro scripts from MoProViewer selec-

tions, which was not undertaken. We expect such a calculation

to be nearly as fast as a calculation between the whole protein

and the ligand using VMoPro.

3.3. Interaction analysis with Charger

Having established Charger as a reliable tool to calculate

electrostatic interaction energy quickly even for biomacro-

molecules, we turned our attention to investigating these same

molecules. The possibility of correlating protein–ligand ener-

gies with experimental results (thermal shift assays) piqued

our interest.

In the study by Schwartz and coworkers, the crystallo-

graphic results seem to have a good agreement with the

thermal shift assay results in solution (i.e. observed differences

in denaturation temperatures; �Td). It was not possible to

obtain the crystallographic structures of complexes with the

hydroxybenzophenones that had the lowest �Td values. On

the contrary, the HBPs with the highest �Td values seemed to

be well bound in the active site. Investigating the individual

residue–ligand concept became so appealing that we created a

special module in MoProViewer dedicated to it.

Firstly, a short introduction to the protein–ligand complex is

in order. Charger determined the electrostatic energy of the

interaction between the glutathione transferase Omega 3S

from Trametes versicolor (TvGSTO3S) and four hydroxy-

benzophenone inhibitors (HBPs; Table 2). TvGSTO3S is a

dimeric enzyme; each monomer contains an active site with a

glutathione-binding site (G-site) and a hydrophobic pocket for

the electrophilic substrate (H-site) (Schwartz et al., 2018).

Hydroxybenzophenones sit in the H-site, where 2,4,40-HBP

has a distinct conformation from those of 2,4-, 2,3,4- and 3,4-

HBP (Fig. 4 and Supplementary Fig. S3). Thermal shift assays

show that the latter three had a greater thermal stability

compared with the 2,4,40-HBP complex. The crystal structure

of this complex (PDB entry 6f68) shows higher thermal

motion and the disordered character of this ligand (a main

conformation was modelled with an occupancy factor of 0.79)

is consistent with its low thermal shift of only �Td = 2.9 K.

Schwartz et al. (2018) did not establish a quantitative

correlation between the thermal shifts and the ligand-binding

strengths. Interestingly, these thermal shifts and Charger

energies for monomers and their own

ligands are well correlated (correlation

coefficient values generally above 85%;

see Fig. 5 and Supplementary Fig. S4

and footnotes to Supplementary Table

S7). The correlations of thermal shifts

with the interaction energies of one

monomer and the ligand bound in the

second monomer are much poorer

(correlation coefficient values generally

below 40%). Stronger correlations are

expected in the first case, since the

ligand within the binding site normally

has a stronger influence on the overall

protein–ligand complex stability.

The order of thermal shift values

measured for the considered complexes

with benzophenones nearly perfectly

matches that of the electrostatic ligand-

binding energies computed with

Charger. Trend-line slopes (around

�6.5 kcal mol�1 K�1 for monomers and

�12 kcal mol�1 K�1 for the dimer)

indicate that we should detect a

different thermal shift by at least 1 K if

we calculate a difference of around

�6 kcal mol�1 per monomer. As

expected, these numbers are higher

when considering polarization (around

�9 kcal mol�1 K�1 for monomers and

�17 kcal mol�1 K�1 for the dimer). An

experimentally observable difference in

the thermal shift of 1 K should arise for

a small structure modification (such as a

slight chemical modification of a ligand
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Figure 4
Binding of benzophenones (2,4-, 3,4-, 2,4,40- and 2,3,4-HBP) in the TvGSTO3S H-site (Schwartz et
al., 2018; PDB entries 6f66, 6f67, 6f68 and 6f69, respectively). The TvGSTO3S H-site is a well
delineated deep cavity. Polar residues (Tyr17 and Arg124) at the cavity entrance close to the
glutathione binding site and the catalytic residue Ser15 complete the H-site. Side chains and
benzophenone ligands are represented as sticks. The conformational difference between the ligand
in the PDB entry 6f68 structure and the other ligands resides in the dihedral angles between the
carbonyl plane and the aromatic rings (Schwartz et al., 2018). The ligand colouring follows the
convention in Table 2.
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or a residue mutation) that changes the interaction energy per

monomer by roughly �6 or �9 kcal mol�1 (without or with

polarization). This could serve as a rough guide for ligand

design (for example with docking) or a protein mutation study.

Thermal shift analysis is a commonly used tool in lead

compound identification (screening) during drug discovery

and to a lesser extent in lead optimization (Pantoliano et al.,

2001; Xing et al., 2019).

A typical analysis of the three-dimensional structure of a

macromolecular complex highlights assumed interactions that

favour macromolecule–small molecule adhesion. This analysis

involves visual inspection and distance measurements.

Schwartz et al. (2018) performed this ‘manual analysis’ in the

complexes of TvGSTO3S with benzophenone ligands. They

assumed that the H-site of TvGSTO3S is suited to accom-

modate HBPs due to the presence of polar residues (Tyr17 and

Arg124), aromatic side chains (Phe123, Trp127, Phe128,

Phe168 and Tyr175) and the aliphatic part of Arg171 (Fig. 4).

Charger calculates the contribution (favourable or un-

favourable) of each individual residue to the total interaction

energy between a ligand and TvGSTO3S. Observing the

interaction energy contributions of all 240 individual residues

reveals that the two monomers are roughly similar, with a

remarkably high degree of intramonomer correlation

(Supplementary Table S8). Analysis of the structures indeed

revealed no difference between the subunit main chains

(mean r.m.s.d. of 0.12 Å). There is even a pronounced corre-

lation between the per-residue interaction energies for

monomers hosting different ligands, except for the ligand with

a 40-hydroxyl group (PDB entry 6f68, 2,4,40-HBP; Supple-

mentary Table S8). The uncommon position of the 40-hydroxyl
ligands within the binding site can explain these weaker

correlations.

We went through the individual binding contributions to

find the most interesting residues: those with the most

pronounced electrostatic interaction energy. We realized that

many residues make a minor contribution (Supplementary

Fig. S5). Taken at the protein scale, these minor favourable

and unfavourable contributions roughly balance themselves

out.

We then used a simple filtering criterion: at least one

ligand–residue electrostatic interaction energy surpasses

�3 kcal mol�1, corresponding roughly to a 3� standard

deviation (Fig. 6). As expected, the retained residues included

most of the residues found by visual inspection (Tyr17,

Arg124, Trp127, Phe128, Phe168, Arg171 and Tyr175), with

the notable exception of Phe123. Interestingly, Charger also

identified residues not suspected from a visual search: Pro16,

Arg20, Lys55 and Asn120. We inspected these residues closely,

and detail here the interactions of Pro16, Tyr17, Phe168 and
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Figure 5
Relationship between estimated experimental thermal shifts and
computed energies in GST monomers. Relationship between computed
electrostatic interaction energies (a) Ee without polarization and (b) Eep

with polarization from Charger calculations and estimated experimental
thermal shifts for glutathione transferase and four ligands. The quantities
Ee and Eep represent interaction energies between each monomer and the
ligand bound in its active site, along with their mean values. Thermal shift
values are given in Supplementary Table S7.

Figure 6
Energy contribution of protein residues to ligand binding. Negative
electrostatic (without polarization) interaction energy contributions of
individual residues to GST–ligand binding for the two GST monomers (A
and B). Residues with no energy contribution larger than �3 kcal mol�1

are omitted for clarity. Negative numbers on the y axis indicate a
favourable binding contribution (green background) and positive
numbers indicate unfavourable binding (red background). The legend
refers to the PDB codes given in Table 2. The ligands follow the ascending
order of their thermal shifts.
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Arg171. Other residues have similar energy profiles (Fig. 6)

and explanations on the atomic level.

Tyr17 contributes favourably to the binding of 2,4-, 3,4- and

2,3,4-HBP, but not significantly to that of 2,4,40-HBP. In the

first three cases the Tyr17 side chain binds the benzophenone

4-hydroxyl group via a hydrogen bond. The particular 2,4,40-
HBP conformation disallows the formation of an equivalent

hydrogen bond (Schwartz et al., 2018), so the contribution of

this residue becomes negligible.

The contribution of Phe168 is favourable in all cases due to

C—H� � �� interactions. Contrary to the previous case, it

contributes much more to 2,4,40-HBP binding due to an

additional hydrogen bond between the Phe168 carbonyl group

and the 40-hydroxyl group (see Supplementary Fig. S6 and

Section S2). The 2,4,40-HBP ligand has a particular binding

mode that differs from the other three benzophenones that do

not have a 40-hydroxyl group. The binding of this ligand is not

favoured by several nearby residues (Arg20, Asn120 and

Arg171), as their interaction energies are unfavourable (the

sum of electrostatic interaction energies for the cited residues

is +10.1 kcal mol�1, averaged between two monomers; Fig. 6).

However, 2,4,40-HBP forms a 40-O—H� � �O C hydrogen

bond with the Phe168 carbonyl group. The O� � �O distances of

2.75 and 2.66 Å (monomers A and B) are shorter than 3 Å,

which enables them to be classified as strong hydrogen bonds

(MacLeod & Rosei, 2014). The balance between these un-

favourable contributions and this strong hydrogen bond

specific to the 40-OH substitution might induce this ligand to

adopt the specific binding mode observed in the crystal

structure.

The calculated electrostatic interaction energy reflects this

trend (–16.2 kcal mol�1 for 2,4,40-HBP, averaged over two

binding sites, compared with �4.8 � 0.9 kcal mol�1 for the

40-hydrogen ligands, average and standard deviation for three

ligands in two binding sites). The value of �4.8 �
0.9 kcal mol�1 roughly corresponds to the interaction energy

between a ligand aromatic ring and the Phe168 phenyl ring, an

interaction that is present for all four ligands. The described

strong hydrogen bond in the case of 2,4,40-HBP could be

responsible for the additional energy of roughly

�11 kcal mol�1. One should keep in mind the desolvation

penalty: the effect of hydrogen bonds on ligand-binding

strength is often strongly attenuated

due to almost isoenergetic hydrogen

bonds with the bulk water solvent.

Charger pointed towards an amino

acid that was not deemed to be signifi-

cant by visual inspection in the

study by Schwartz and coworkers:

Pro16. This residue interacts favourably

with 2,4-, 3,4- and 2,3,4-HBP (�5.3 �
0.9 kcal mol�1, mean � standard

deviation) and interacts more weakly

with 2,4,40-HBP (�0.8 kcal mol�1 in one

binding site and �2.4 kcal mol�1 in the

other). A closer contact between Pro16

and 2,4-, 3,4- and 2,3,4-HBP might in

part explain these differences. The

shortest interatomic distance (from

proline C� to a ligand O atom) is 4.5 Å

for 2,4,40-HBP and 3.7 Å for the three

other benzophenones.

Visual inspection of the TvGSTO3S–

HBP crystal structures predicts weak

but favourable C—H� � �� and van der

Waals interactions between the HBP

ligands and the aliphatic part of the

Arg171 side chain (Schwartz et al.,

2018). A different interpretation

appears under Charger’s microscope.

When considering only permanent

multipoles, it indeed predicts a strongly

favourable interaction energy between

Arg171 and 2,4-, 3,4- and 2,3,4-HBP (–

2.6 � 1.1 kcal mol�1, mean � standard

deviation). This interaction appears

similar to that with Pro16, but is slightly

stronger. Surprisingly, and unlike in the
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Figure 7
Ligand and residue 171 dipole moments. Strength (arrow length, scaled to 0.21 Å/D) and relative
orientation of dipole moments for residue 171 and benzophenone ligands. First row: Arg171 (on the
right of both figures) with (a) a 40-hydroxy (black) and (b) a 40-hydrogen (orange) ligand. Second
row: the 40-hydroxy ligand (on the left of both figures) with wild-type Arg171 in green, as in (a), and
(d) mutated Glu171 in light blue (d). We chose glutamine as a mutation candidate for Arg171 that
could test the veracity of our computational method. All figures depict binding site A.
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Pro16 case, it detects an unfavourable interaction energy

between Arg171 and 2,4,40-HBP of about +4.5 kcal mol�1

(Fig. 6).

Calculation and analysis of molecular dipole moments using

VMoPro andMoProViewer provide some explanations of how

Arg171 affects ligand binding. The dipole moments of 2,4,40-
HBP and Arg171 are at angles of 63� and 87� in the two

monomers (Supplementary Table S9, Fig. 7a). The positive

charge distributions of Arg171 and 2,4,40-HBP seem to inter-

fere. This renders the contact between the ligand and the

amino-acid side chain unfavourable. On the other hand, the

antiparallelism between the dipole moment of 2,4-, 3,4- and

2,3,4-HBP and that of Arg171 (angles of around 150–170�;
Supplementary Table S9, Fig. 7b) could signal a favourable

Keesom interaction (the interaction between permanent

dipoles; Keesom, 1921).

Furthermore, there is a narrow solvent-accessible cavity

near the surface of the Arg171 side-chain extremity (Supple-

mentary Fig. S7). This cavity is likely to contain a counterion

that would alleviate the influence of Arg171. The counterion

would be located further away from the ligand than Arg171, so

its influence should be smaller than that of the Arg171 charge.

The addition of polarization density supports the general

conclusion. It largely compensates for the negative effect of

Arg171 on 2,4,40-HBP binding (electrostatic interaction

energy of about +0.8 kcal mol�1) and improves the standing

of the other ligands (interaction energy of �7.9 �
1.6 kcal mol�1). Alhough Arg171 does not hinder 2,4,40-HBP

binding severely, as one would conclude without polarization

density, a mutation of this residue could still improve ligand

binding (see Section 3.4).

3.4. Interaction prediction with Charger

The results of the detailed investigation of GST–benzo-

phenone binding prompted us to consider research perspec-

tives. One promising offshoot is a mutation study on GST.

We have tried to improve the binding of 2,4,40-HBP by an in

silico mutation. Arg171 intrigued us through its seemingly

unfavourable dipole interaction with this ligand. An attenua-

tion of the arginine charge and polar contributions could

establish whether this contribution is responsible for the

weakly unfavourable binding energy.

We first considered alanine, but dismissed it since replacing

the large arginine residue by a small side chain would leave a

large void in the active site. We looked for a suitable neutral

amino acid of approaching size. We supposed that mutating

Arg171 to a glutamine should have an effect on dipole

moment due to the introduction of a relatively electronegative

O atom and to the loss of the formal charge of arginine.

The dipole moment of an in silico mutated Gln171 is much

smaller than that of Arg171. The dipole orientation relative to

2,4,40-HBP remains similar to that found in the wild-type

Arg171 (Figs. 7c and 7d, Supplementary Table S9). Further-

more, the addition of polarization density shows how the

mutation affects the entire binding pocket. The negative effect

of the wild-type Arg171 on 2,4,40-HBP binding diminishes

when taking polarization into account (average interaction

energy of about +0.8 kcal mol�1 instead of +4.5 kcal mol�1

without polarization). The Arg171Gln mutant remains

favourable: the Gln171–2,4,40-HBP interaction energy (with

polarization) improves to around �2.1 kcal mol�1 (Supple-

mentary Table S9). This improvement is likely to come from

neutralizing the dipole effect, largely due to the lack of charge

on glutamine. An analysis of electric field lines underscores

this interpretation (Supplementary Fig. S6 and Section S2).

The polarization pronouncedly affects the transferred

electron density in the entire binding site. The electrostatic

interaction energies (including polarization) with the 2,4,40-
HBP ligand are �41.4 and �84.0 kcal mol�1 for the wild-type

Arg171 monomer average and dimer, compared with a more

favourable �50.3 and �101.6 kcal mol�1 for the mutant

Gln171 monomer average and dimer. The projected energy

difference should correspond to about a 1 K difference in

thermal shift, making Arg171Gln an attractive mutation

candidate.

4. Conclusions

The methodology presented here and in Nguyen et al. (2018)

gives results that are almost identical to the established

nEP/MM numerical integration, but in a fraction of the time.

Charger determines electrostatic interaction energies with a

precision within bounds of �1 kcal mol�1 for a given charge-

density model. This remains true even though several of the

newly studied systems contain previously uninvestigated

sulfur atoms. It has to be recalled, however, that using

different charge-density models, such as ELMAM2, UBDB

and INVARIOM database transfer, results in much larger

variations (Bąk et al., 2011) and the accuracy is estimated

about at one quarter in relative value. The purpose of Charger

is to calculate electrostatic energies, so it does not currently

have any features to calculate other contributions to the total

interaction energy. van der Waals energy-term computation is

possible with the VMoPro module, using the Lennard–Jones

parametrizations proposed in the literature.

The raison d’être of Charger is speed. Its aEP/pMM calcu-

lations are 30–80 times faster than VMoPro–nEP/MM. They

take several seconds for the largest examined systems:

protein–ligand complexes. This makes Charger an excellent

tool to explore crystal or protein electrostatic interaction

energies in real time. One can demonstrably improve the

speed of Charger easily by using appropriate cutoffs, while

guarding great accuracy: for example, in a systematic database

search where speed becomes a concern.

We have studied the glutathione–benzophenone interaction

in detail using Charger. The order of computed Charger

protein–ligand energies and experimental thermal shifts is

identical in nearly all cases, with high correlation coefficients.

The slope of the trend line helps to decide which in silico

investigations to hand over to the laboratory.

We have used Charger calculations further to determine the

contributions of each residue to benzophenone ligand fixation.

Charger determines important residues from the electrostatic
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point of view: Schwartz et al. (2018) already suspected most of

them from a visual analysis.

Charger also uncovered residues that are adverse to

benzophenone fixation. Particularly interesting was the case of

Arg171, which interacts favourably with three benzophenone

ligands, but not with 2,4,40-HBP. We suspected that mutating

Arg171 to a noncharged residue such as a glutamine could

remove this electrostatic obstacle to binding. This adds an

alternative to strategies that aim to improve or increase the

number of existing favourable contacts (Thapa & Ragha-

vachari, 2019).

An in silico Arg171Gln mutant meets our expectations. The

polarization correction of the transferred charge density

(Leduc, 2019; Leduc et al., 2019) helped to determine the

importance of this mutation. If the production and purification

of the Arg171Gln mutant turns out to be feasible, thermal shift

assays could assess this prediction in the future. Further

electrostatic energy studies on numerous protein–ligand

systems with more thermodynamic data such as binding

constants and enthalpy of binding are needed to assess the

importance of polarizing charge densities based on transferred

multipolar parameters.

One can easily integrate Charger into different programs. It

supports Slater-type basis functions in general, and Hansen–

Coppens charge-density models in particular. We have

released the library code under the permissive Apache 2.0

licence to encourage integration into other projects. Our

flagship program MoProViewer now comes with a simple and

intuitive Charger interface. Both the Charger and MoPro-

Viewer codes can be found at https://crm2.univ-lorraine.fr/lab/

fr/software/mopro/.

5. Related literature

The following references are cited in the supporting infor-

mation for this article: Clementi & Roetti (1974), Koga et al.

(1993, 2000) and Michael & Volkov (2015).
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hal.archives-ouvertes.fr/tel-02528924/.

Leduc, T., Aubert, E., Espinosa, E., Jelsch, C., Iordache, C. & Guillot,
B. (2019). J. Phys. Chem. A, 123, 7156–7170.
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