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Crystallography at subatomic resolution permits the observation and measure-

ment of the non-spherical character of the atomic electron density. Charge

density studies are being performed on molecules of increasing size. The

MOPRO least-squares re®nement software has thus been developed, by

extensive modi®cations of the program MOLLY, for protein and supramole-

cular chemistry applications. The computation times are long because of the

large number of re¯ections and the complexity of the multipolar model of the

atomic electron density; the structure factor and derivative calculations have

thus been parallelized. Stereochemical and dynamical restraints as well as the

conjugate gradient algorithm have been implemented. A large number of the

normal matrix off-diagonal terms turn out to be very small and the block

diagonal approximation is thus particularly ef®cient in the case of large

structures at very high resolution.

1. Introduction

The electron cloud around the atoms of a molecule is

deformed as a result of chemical bonding and non-bonding

interactions (notably hydrogen bonds) between the atoms.

Accurate electron density distribution in the crystalline state

can be derived from an ultra-high resolution X-ray diffraction

experiment (Coppens, 1967). Our laboratory has been

involved in charge density studies on molecules of increasing

size: the octapeptide LBZ of helical structure (Jelsch et al.,

1998) and a scorpion toxin (Housset et al., 2000). With the

combined use of synchrotron radiation sources and crystal

cryocooling, the number of protein structures re®ned at a

resolution higher than 1.0 AÊ is increasing continuously.

Recently, the charge density of the protein crambin (46

amino acids) was analysed (Jelsch et al., 2000) at ultra-high

resolution (0.54 AÊ ). The crystal structure was re®ned with a

model for charged non-spherical multipolar atoms in order to

describe the molecular electron density distribution accu-

rately. The initial multipoles and charges were transferred

from our database of average parameters (Pichon-Pesme et al.,

1995) derived from the analysis of several crystals of amino

acids and small peptides. The average electron density para-

meters of the protein main chain were then re®ned against the

crambin diffraction data. The crambin electron density

deformation is illustrated in Fig. 1 (Jelsch et al., 2000). The

analysis of the electron density distribution of human aldose

reductase is also underway. Crystals diffracting to very high

resolution (Lamour et al., 1999) have been grown for this

enzyme of 315 amino acids and diffraction data have been

collected to 0.65 AÊ resolution at the APS synchrotron

(Mitschler et al., 2000).

The least-squares computer program MOPRO was devel-

oped for the charge density analysis of proteins. The software

Figure 1
Iso-contour surface of the experimental deformation electron density
(level 0.4 e AÊ ÿ3) along the polypeptide chain of crambin. The deforma-
tion density represents the difference between the actual electron density
of the molecule and the density calculated for the promolecule, made up
of isolated spherical neutral atoms. The density is `static' in that it is
computed for atoms at rest.
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is derived from the charge density analysis program MOLLY

(Hansen & Coppens, 1978). The atomic electron density is

described in terms of core, valence and multipolar electron

density:

�atom�r� � �core�r� � Pval�
3�val��r� �

P

l

�03Rl��
0r�

P

m

Plmylm�:

�1�

The ®rst two terms on the right describe spherically symmetric

core-plus-valence density and the third term describes the

non-spherical multipolar distribution of the valence electron

density of the atoms. The valence-shell electron populations

Pval account for interatomic charge transfer and the multipole

populations Plm account for non-spherical intra-atomic redis-

tribution of valence electron density. The Rl are Slater-type

radial functions and the ylm� are real spherical harmonic

angular functions. The parameters � and �0 model the

expansion and contraction, respectively, of the spherical and

multipolar parts of the valence electron density.

2. Restraints

In structure re®nement by least squares (LS), one usually

seeks to minimize a residual function E, as a weighted sum

over the re¯ections,

E �
P

H

WH�jF
obs
H j ÿ jF calc

H j�
2
; �2�

and assumes that a structure factor F is a linear function of

each parameter for small changes.

When re®ning the structure of biological macromolecules,

because of the limited resolution and the low variables/

observations ratio, it is necessary to incorporate stereo-

chemical knowledge into the re®nement. Such restrained

reciprocal-space least-squares re®nement (Konnert, 1976;

Konnert & Hendrickson, 1980) is very effective and increases

the robustness of the convergence. The minimized function is

composite, consisting of the crystallographic error term and

other residual components which re¯ect target geometry as

anticipated from small-molecule structures:

E � EX-ray � Erestrain: �3�

2.1. Stereochemistry

The geometric restraints implemented in MOPRO are the

distance, angle and planarity (Table 1). Planarity restraints

were programmed by considering the eigenvalues �i of the 3�

3 matrix V (Urzhumtsev, 1991):

Vij �
P

atoms

�Xi ÿ hXii��Xj ÿ hXji�; �4�

where X1, X2 and X3 represent respectively the x, y and z

coordinates of the atoms belonging to the plane. This makes it

possible to re®ne the optimum plane orientation at the same

time as the atomic coordinates. The function minimized in

MOPRO is the dimensionless quantity �1�2�3/(�1 + �2 + �3)
3

(Table 1) which models planarity more accurately than the

function �1�2�3 proposed by Haneef et al. (1985) and is

simpler to implement than the minimization of the smallest

eigenvalue �min, proposed by Urzhumtsev (1991).

Stereochemical information is generally no longer neces-

sary for the non-hydrogen atoms in small-molecule crystal-

lography. However, for medium-size molecules and

macromolecules at atomic and subatomic resolution, stereo-

chemical information may still be necessary, as some regions

can be disordered. For example, in crambin, as much as 30%

of the protein atoms have multiple conformations (Yamano et

al., 1997; Jelsch et al., 2000). The programming of distance,

angle and planarity restraints was therefore deemed necessary

for the structure and charge density re®nement of crambin.

On the other hand, less electron density is associated with

the hydrogen atoms compared with the heavier atoms as the

hydrogen atoms lack the core electrons. Thus, the hydrogen

atoms may still need to have their positions de®ned by

stereochemical information in small-molecule crystallography.

In crystallographic re®nement software like SHELXL97

(Sheldrick & Schneider, 1997) or CNS (BruÈnger et al., 1998),

the positions of the hydrogen atoms can be constrained

according to standard geometries. Alternatively, this can be

achieved using restraints as in MOPRO. Restraints are a

convenient and smoother way to re®ne properly the positions

of hydrogen atoms in charge density studies of small mole-

cules. Notably, the HÐX distance to the neighbouring atom

can be restrained to standard values derived from neutron

diffraction studies (Allen, 1986).
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Table 1
List of restraints implemented in MOPRO.

Keyword Description Function minimized

XYZRES Coordinates X, Y, Z (X ÿ Xr)
2

DISTAN Distance d between two atoms (d ÿ dr)
2

ANGLER Angle � between three atoms (� ÿ �r)
2

PLANAR Planarity �1�2�3/(�1 + �2 + �3)
3

UIJRES Thermal displacement parameters (Uij ÿ Uij
r )

2

RIGIDB Rigid bond (ZU ÿ ZU0)2

URATIO Isotropic thermal displacement parameter riding on bonding
atom

(U ÿ Ur)
2

ISOTRO Thermal displacement ellipsoid limited anisotropy
P

(Ui ÿ Uj)2/hUiii2 = 3[
P

i(U
ii ÿ hUiii)2 +

P
i6�jU

ij2]/hUiii2

KAPPAR Expansion coef®cient � and �0 (� ÿ �r)
2
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2.2. Thermal motion

The values of the coordinates and thermal displacement

parameters Uij can also be restrained in MOPRO. Such

restraints can be applied if neutron diffraction data are

available for the crystal studied. In the re®nement versus the

X-ray diffraction data, the target values for the coordinates

and thermal displacement parameters can be set to their

values in the neutron structure, the allowed deviation being

set to the neutron experimental error. However, as combined

X-ray and neutron diffraction studies often display a thermal

difference between the two data sets, an additional `thermal

scale factor' may be introduced. Alternatively, in the case of

small compounds, thermal displacement parameters can be

derived from an ab initio calculation of the harmonic force

®eld (Flaig et al., 1998) and could be used as targets in

MOPRO for the Uij restraints. These restraints, which are

more ¯exible than constraints, permit the combination of

information from different sources and are helpful in the

deconvolution of the deformation density and the thermal

motion.

Several restraints on the thermal displacement parameters

have been implemented. Hydrogen atoms are often assigned

an isotropic displacement parameter proportional to the

equivalent B factor of the connecting atom. The multiplier

coef®cient generally used is respectively 1.5 or 1.2 for

hydrogen atoms with or devoid of a rotation degree of

freedom. The isotropic B factor of the hydrogen atoms can be

restrained in MOPRO with a chosen proportionality coef®-

cient. This restraint was applied to the main-chain hydrogen

atoms in the charge density re®nement of the main-chain

polypeptide in crambin (Jelsch et al., 2000). Such information

can also be useful in small-molecule X-ray electron density

studies, as the thermal motion of hydrogen atoms is not well

de®ned.

A restraint limiting the anisotropy of the atomic thermal

motion is also implemented. When the thermal tensorUij of an

atom has three identical eigenvalues, the thermal motion is

isotropic. The anisotropy of theUij tensor can be conveniently

limited with the use of the dimensionless quadratic functionP
(Ui ÿ Uj)2/hUii2 describing the global discrepancy between

the three eigenvalues Ui (Table 1). This represents a model

between isotropy and anisotropy and avoids non-positive

de®ned Uij thermal motion tensors. Such isotropy restraints

were applied in the case of crambin (Jelsch et al., 2000) to the

partially occupied water molecules and disordered protein

atoms, for which the electron density map (2Fo ÿ Fc at the 5�

level) showed a well de®ned thermal displacement ellipsoid.

Other partially occupied atoms were set to be isotropic.

A rigid-bond restraint, which renders the mean-square

displacement for two covalently bonded atoms similar along

the bond direction, is also programmed. Hirshfeld (1976)

considered that a rigid-bond discrepancy of �ZU < 10ÿ3 AÊ 2

was a good criterion to assess the reliability of the thermal

displacement parameters in a crystal structure. The deviation

from the rigid bond in actual crystal structures devoid of

crystallographic errors and uncertainties can presumably be

expected to be one order of magnitude smaller than this value.

This additional information on the thermal motion can facil-

itate its deconvolution from the deformation density. As

shown by Rosen®eld et al. (1978), the rigid-bond criterion may

be extended to any pair of atoms belonging to a rigid group,

such as aromatic cycles.

2.3. Expansion/contraction of the valence density

The use of external information obtained from accurate

small-molecule crystallographic analyses as restraints in a

macromolecular re®nement can be extended to charge density

parameters. The case of the parameters � and �0 describing the

radial expansion/contraction of the valence electron density is

noteworthy, these features often being the most dif®cult to

re®ne in electron density studies, even for small molecules.

Peres et al. (1999) and Volkov et al. (1999, 2000) focus parti-

cularly on the radial expansion �0 of the multipolar deforma-

tion density and suggest that this parameter be constrained.

The expansion/contraction parameters can be restrained in

MOPRO during the multipolar re®nement. For instance,

average values from the database (Pichon-Pesme et al., 1995)

of experimental multipole parameters can be the selected

targets (Table 2). Targets for the � and �0 variables can also be

deduced from theoretical calculations (Volkov et al., 1999).

Unlike the constrained re®nement where the value is ®xed,

the re®nement with restraints allows adjustment of the para-

meters with respect to the speci®c chemical environment of

the considered atom. For instance, restraining the � coef®cient

of the pyrophosphate atoms was deemed necessary in the

multipolar re®nement of NAD+, the oxidized form of the

nicotinamide adenine dinucleotide molecule (Guillot et al.,

2000), for which charge density analysis is underway. In the

unrestrained re®nement, the electron density maps (Fig. 2a)

show a strong density on the phosphorus nucleus; this is

caused by the � parameter, which re®ned to an unusual value

of 0.917 (3). The charges are unrealistic on the oxygen atoms

(slightly positive) and the phosphorus atom (ÿ1.7 e). The

Table 2
Target values for the application of restraints on the expansion/
contraction parameters � and �0 of protein main-chain atoms and the
phosphate group.

The values are from the updated experimental database of transferable charge
density parameters (Pichon-Pesme et al., 1995). The root-mean-square
deviations are shown in parentheses. The values of the � and nl coef®cients
up to the maximal multipolar expansion (dipoles, quadrupoles, . . . ) applied in
the Slater-type radial function are also given. The radial function is of the form
Rnl

(r) = rnlexp(ÿ�0�r).

Atom type h�i h�0i nl � (bohrÿ1)

C 0.994 (4) 0.93 (2) 2, 2, 3 3.0
O 0.975 (6) 0.95 (3) 2, 2, 3 4.5
N 0.985 (3) 0.86 (2) 2, 2, 3 3.8
C� 0.991 (5) 0.89 (2) 2, 2, 3 3.0
C� (Gly) 0.992 (3) 0.94(1) 2, 2, 3 3.0
H� 1.16 (2) 1.07 (3) 1 2.26
H (N) 1.20 (4) 0.98 (3) 1 2.26
P 1.05 (2) 1.04 (3) 6, 6, 6, 6 3.6
O (O±P) 0.969 (1) 0.94 (3) 1, 2, 4 4.5
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application of restraints on the radial expansion parameter �

leads to a physically meaningful charge density on the NAD+

pyrophosphate (Fig. 2b).

3. Algorithmic optimizations

3.1. Conjugate gradients

In a cycle of least-squares minimization of the function E

[equation (2)], the n parameters vector shift �x to be applied to

the re®ned parameters is obtained by solving a system of n

linear equations of the form

A �x � b; �5�

where A is the n2 symmetric positive de®nite matrix of normal

equations and b is a vector of dimension n.

The equation system is solved in MOLLY (Hansen &

Coppens, 1978) by inverting the normal matrix A; this is

computationally prohibitive for large systems with many

variables. This procedure can be replaced by the conjugate

gradient algorithm, which is an iterative procedure, ®rst

described by Hestenes & Stiefel (1952) and Fletcher & Reeves

(1964), that avoids the inversion of the normal matrix and is

less sensitive to matrix singularities.

The solution of the equation system (5) is approximated by

successive displacements along A conjugate directions in the

parameter space until convergence. The convergence is

usually reached in a number of iterations that is much smaller

than the number of variables n. The procedure, as imple-

mented in MOPRO, is described in Appendix A.

3.2. Matrix preconditioning

The convergence of the conjugate gradient algorithm can be

very slow. For example, in the re®nement of aldose reductase

and crambin, the number of necessary iterations can reach

several hundreds (Figs. 3a and 3b). The rate of convergence of

the conjugate gradient algorithm is related to the ratio

between the largest and the smallest eigenvalue, also called

the condition number of the normal matrixA (Tronrud, 1992).

To render the convergence faster and more robust, the

normal matrix A can be preconditioned (Tronrud, 1992) in

order to obtain a condition number closer to unity. Using this

property, it is legitimate to transform the normal matrixA into

Pÿ1A, where the matrix Pÿ1 is a symmetric positive de®nite

matrix called the preconditioner. In the preconditioned case,

equation (5) becomes

Pÿ1 A �x � Pÿ1 b: �6�

The general preconditioning procedures are detailed in

Appendix B. The preconditioner P used in MOPRO is simply

the diagonal part of the matrix A. The matrix Pÿ1 is then a

rough approximation of the inverse matrix Aÿ1 and the

product Pÿ1A is close to the identity matrix. This is especially

true with high-resolution diffraction data (see the next para-

graph), where the magnitudes of the non-diagonal elements of

the matrix A are often small compared with the diagonal

elements and, a fortiori, when the block-diagonal approx-

imation of the matrix A is used.

The ef®ciency of the preconditioning is illustrated in Figs.

3(a) and 3(b) for the two protein systems at subatomic reso-

lution. In the re®nement cycle described for aldose reductase,

the convergence requires 370 iterations, while with the

preconditioned matrix only 19 iterations are necessary (Fig.

3a). In both the preconditioned and the non-preconditioned

case, the parameter shifts �xi converge to the value obtained

by matrix inversion.
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Figure 2
Static deformation electron density map in the ON1±PN±ON2 plane of
the NAD+ pyrophosphate group: (a) without restraints; (b) with the
expansion/contraction coef®cients � and �0 of the phosphorus and
pyrophosphate oxygen atoms restrained to the values extracted from the
multipolar-parameters database (Table 2).
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The eigenvalue spectra of matrices A and Pÿ1A have been

compared for the re®nement cycle of crambin described in Fig.

3(b). The SSPEV routine from the LAPACK library (http://

www.netlib.org/lapack/) is able to compute the eigenvalues of

symmetric de®nite positive matrices. The matrix Pÿ1A is not

symmetric but has the same eigenvalues as Pÿ1/2APÿ1/2, which

is symmetric. To determine the eigenvalue spectrum of Pÿ1A,

the SSPEV routine was thus applied to the Pÿ1/2APÿ1/2

matrix.

As can be seen in Fig. 3(c), the eigenvalue spectrum of

matrix Pÿ1A is considerably narrower (on a logarithmic scale)

than the spectrum of matrix A. The condition number is

reduced by more than three orders of magnitude from 52031

to 31. Correlatively, 303 iterations are necessary to reach

convergence criterion with the non-preconditioned matrix,

and only 15 for the preconditioned one (Fig. 3b). Moreover,

the major variations of �xi occur in the ®rst ten steps.

3.3. Normal matrix sparsity

The normal matrix element concerning the re®ned para-

meters pi and pj is obtained from the weighted summation of

the structure-factor derivative products over the re¯ectionsH:

Aij �
P

H

WH�@F
calc�H�=@pi��@F

calc�H�=@pj�: �7�

The derivative products concerning the restraints are similarly

added to the matrix elements.

If n is the number of re®ned parameters, the normal matrix

contains n(n + 1)/2 independent elements. In the case of

macromolecules containing several thousands of atoms, it is

recommended to omit the off-diagonal elements with small

values, as storing the full normal matrix can become compu-

tationally prohibitive. In all the crystallographic re®nements

of macromolecules at atomic and subatomic resolution

performed in the laboratory, the normal matrix turns out to be

very sparse, as nearly all of the off-diagonal elements have

very small values (Jelsch, in preparation). A normal matrix

element Aij is associated with a pair of parameters pi and pj,

and consequently with a pair of atoms ai and aj.

The elements of the normal matrix have a global tendency

to decrease rapidly with the Patterson vector length between

the concerned atoms, as already observed by Templeton

(1999). To evaluate the relative magnitude of the elements, the

normalized normal matrix A0 shall be considered:

A0
ij � Aij=��Aii Ajj�=2�: �8�

The diagonal elements of A0 are all equal to unity and the

magnitude of an off-diagonal element A0
ij can then be assessed

by comparison with unity. For example, in the case of aldose

reductase at 0.65 AÊ resolution, the positional and displace-

ment parameters of the non-hydrogen protein atoms were

re®ned. The distances below 1 AÊ involve disordered atoms.

The matrix elements are on average very small (|A0
ij| < 0.05) for

atomic distances longer than 1 AÊ (Fig. 4). Thus, matrix

elements with a signi®cant magnitude correspond generally to

pairs of parameters of the same atom.

Figure 3
Effect of the normal matrix preconditioning on the rate of convergence of
the conjugate gradient procedure. The norm of the shift vector �xi at each
conjugate gradient cycle is represented until convergence is reached (" <
10ÿ7). (a) In this minimization cycle, 7500 thermal displacement
parameters Uij of aldose reductase atoms were re®ned against 311000
high-resolution re¯ections (d < 1 AÊ ). Black curve: preconditioned normal
matrix. Grey curve: non-preconditioned matrix. (b) Re®nement of 1488
Uij thermal displacement parameters for the non-disordered atoms of the
protein crambin at 0.54 AÊ resolution. Black curve: preconditioned normal
matrix. Grey curve: non-preconditioned matrix. (c) Corresponding
eigenvalues spectrum of the preconditioned matrix Pÿ1A (black curve)
and the non-preconditioned normal matrix A (grey curve) in the crambin
re®nement. The condition numbers (ratio of the largest and the smallest
eigenvalues) are 31 and 52031, respectively. The eigenvalues of A

represented on the diagram have been divided by the median eigenvalue
of A.

electronic reprint



The a priori knowledge that most of the matrix elements are

negligible and the application of the conjugate gradient

method in the software MOPRO avoids the computation and

the inversion of the full normal matrix. The block-diagonal

approximation is thus particularly ef®cient in the least-squares

re®nement of macromolecules at very high resolution.

3.4. Parallelization

Despite the considerable speed improvements of scalar

computers during recent years, the use of a parallel archi-

tecture should be valuable for some heavy applications in

crystallography. The charge density analysis of protein struc-

tures demands much computer time and memory, as the

number of both observed re¯ections and re®ned parameters is

large. For example, in the case of human aldose reductase, the

number of unique re¯ections measured at 0.65 AÊ resolution

reaches 511000. Furthermore, the computation of structure

factors takes longer when using a multipolar atom model

rather than a spherical model. In the multipolar model case,

the atomic density is decomposed into the core and valence

electron density [equation (1)], which requires several

products of spherical harmonic and Bessel functions. The

number of parameters describing an atom is consequently

increased (three coordinates, six anisotropic displacement

parameters, one occupancy factor, three dipoles, ®ve quadru-

poles, seven octupoles, . . . ).

Fast Fourier transform (FFT) algorithms permit a more

rapid computation of the structure factors and their deriva-

tives. FFT algorithms are ef®ciently applied in the case of

spherical atoms with anisotropic thermal motion, notably by

modelling the atomic electron density as a sum of Gaussian

functions. In the case of multipolar atoms, FTT procedures are

less convenient to apply; they have not been implemented in

MOPRO.

The software MOLLY, on which MOPRO is based, was

designed for small-molecule re®nement and was written in

Fortran 77. Some serial optimizations were necessary to adapt

the source code to a more easily parallelizable form and some

Fortran 90 features, such as dynamical array handling, were

implemented. These optimizations resulted in a speed-up

factor of about three, prior to any parallelization. The prin-

cipal steps in the program MOPRO are shown in Fig. 5.

The program MOPRO has been parallelized using the

OpenMP Fortran Application Programming Interface (API)

on an SGI Origin 2000 equipped with 250 MHz R10000

processors. OpenMP API allows calculations in a run to be

shared among several processes (threads), by inserting direc-

tives in the original code. These directives are recognized by

the compiler if the need for a parallel run is speci®ed (-mp

option); otherwise they are considered as Fortran comments.

OpenMP API is independent of the programming language

used and can be ported on any shared-memory multiprocessor

computer, as long as a compatible compiler is available. There

are two main ways to parallelize a code (Fig. 6), corresponding

either to iterative or to non-iterative work sharing. The

iterative work sharing applies when loop iterations (DO or

WHILE statements) are distributed among several processes. In

this case, each iteration or `skunk' of iterations are executed

simultaneously by different threads, instead of being executed

consecutively as in standard serial loops (Fig. 6a).
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Figure 4
Evolution of the normalized matrix elements as a function of Patterson
vector length in the crystallographic re®nement of aldose reductase. The
matrix elements have been ordered with increasing Patterson vector
lengths and grouped in shells of 0.2 AÊ for the calculation of the root-
mean-square (r.m.s.) and maximum values. Black curve: r.m.s. value of the
A(X, X) elements. Small black squares: maximum value of |A(X, X)|.
Grey curve: r.m.s. value of A(U11, U11) elements.

Figure 5
Diagram describing the general architecture of the program MOPRO.
The procedures that have been parallelized are in bold.
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In the non-iterative work sharing, two or more independent

sections of the code are executed simultaneously by several

threads in the parallel construct (Fig. 6b). In a sequential run,

these sections would have been executed successively.

In both cases, the main process (master thread) of the

sequential part of the program splits into several threads when

a parallel directive is met. At the end of the parallel section or

loop, the program returns to the serial mode. A program with

frequent switches to parallel mode is denoted ®ne-grained, as

opposed to coarse-grained programs. As the threads have to

be synchronized in a parallel calculation and as the system

needs some time to switch to parallel mode, the time saving in

®ne-grained programs may be limited. This is particularly true

when many threads are used. More details about OpenMP are

available at http://www.openmp.org. Optimal parallel calcu-

lations are performed with one thread per processor, as a

number of threads larger than the number of available

processors does not lead to additional gains in speed.

The ef®ciency of the parallelization can be estimated from

the speed-up ratio s(p) = t(p = 1)/t(p), where t(p) is the

execution time for p threads (Fig. 7a). Another criterion is the

ef®ciency e(p) = s(p)/p (Fig. 7b). In the current paper, the

speed-up and ef®ciency are de®ned for the entire optimized

program, i.e. the execution time including both the sequential

and the parallel parts of the code.

In the serial execution of MOPRO, the structure factors,

their derivatives and the normal matrix-element calculations,

and secondly the conjugate gradients procedure, are the most

computer-time-consuming parts of the program, especially for

Figure 6
(a) Schematic representation of the iterative work-sharing method. A
loop over N iterations is computed by one thread (top of the ®gure).
After parallelization, it is chopped into three loops over N/3 iterations
computed simultaneously by three threads (bottom). (b) Schematic
representation of the non-iterative work-sharing construct. At the top of
the ®gure, three independent sections of the code are executed
consecutively by one thread. At the bottom, they are executed
simultaneously by three threads in parallel mode.

Figure 7
Speed-up (a) and ef®ciency (b) of the parallelization as a function of the
number of threads during one cycle of coordinates re®nement for aldose
reductase at 0.65 AÊ resolution. The structure contains 5916 atoms; 10500
variables were re®ned against 470000 observed structure factors.
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large systems with many re®ned parameters. The loop paral-

lelization method (iterative work sharing) was applied to these

parts of the software MOPRO. The computation of the

structure factors, of their derivatives and of the normal matrix

are built inside a loop over all the re¯ections. As each result is

independent from the others, the re¯ections were distributed

among several threads.

The speed-up and ef®ciency obtained by the parallelization

in the case of aldose reductase are shown in Fig. 7. The

re®nement cycle includes the matrix construction from the

structure factors and their derivatives (parallel loop), the

conjugate gradient minimization (serial) and a ®nal structure-

factor calculation (parallel) (Fig. 5). The execution time when

16 processors are used is reduced by a factor of ten to about

2 h. The parallelization thus allows an appreciable time saving

and renders the multipolar re®nement with the software

MOPRO applicable to macromolecules.

4. Electroneutrality constraint

The program MOPRO allows the re®nement of the valence

populations. An electroneutrality constraint on the atomic

charges may be necessary to keep the total number of elec-

trons constant. The electroneutrality constraint method initi-

ally implemented in MOLLY uses some properties of the

variance±covariance matrix (Hamilton, 1964), which is the

inverse of the normal matrix A. In MOPRO, with the use of

the conjugate gradients algorithm, the variance±covariance

matrix is not computed and this method is thus not applicable.

The method described by Raymond (1972) has therefore been

implemented in MOPRO. As the sum of the valence popu-

lations is set constant, the last parameter Pvn can be set to a

linear combination of the n ÿ 1 precedent independent

parameters and the number of variables is decreased by one.

Then, if �Pvi is the shift on the ith re®ned valence population,

the shift to apply to the last parameter is

�Pvn � ÿ
P

1;nÿ1

�Pvi: �9�

The derivatives of the structure factors F with respect to the n

ÿ 1 linearly independent Pv variables have then to be modi-

®ed accordingly:

@F=@Pvi ! @F=@Pvi ÿ @F=@Pvn: �10�

This method leads to the same valence population shifts as

with the Hamilton (1964) method.

5. Estimated standard deviations

The properties of the estimated standard deviations (e.s.d.'s, or

standard uncertainties) of the crambin atomic coordinates

have been analysed at atomic (1 AÊ ) and subatomic (0.54 AÊ )

resolution. The e.s.d.'s discussed here were obtained by

inversion of the (non-full) normal matrix during a coordinates

re®nement cycle. Fig. 8 shows the e.s.d.'s for the X coordinates

as a function of the atomic thermal motion. No stereochemical

restraints were applied in this analysis. When the data were

further truncated at 1.5 AÊ resolution, the matrix turned out to

be singular. This illustrates that geometrical restraints are

necessary information to incorporate at that resolution.

The e.s.d.'s do increase, as expected, with the thermal

motion of the atoms (Stanley, 1965) and there is a twofold

increase of the precision of the coordinates from 1 to 0.54 AÊ

resolution. The e.s.d.'s of the coordinates are also clearly

dependent on the atom type, especially at 1 AÊ resolution (Fig.

8a). The positions of the six sulfur atoms of crambin are

de®ned with the best precision. The higher the scattering

factor of an atom in the considered resolution range, the more

precise are the coordinates. The scattering factor of an atom at

low resolution is proportional to total number of electrons

(core plus valence) of the atom. Therefore, at 1 AÊ resolution,

the carbon, nitrogen and oxygen atoms form three distin-

guished clusters in the B versus e.s.d. graph (Fig. 8a).
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Figure 8
Estimated standard deviations of the X coordinates as a function of the
equivalent isotropic thermal displacement parameter Beq = hBiii. The
coordinates for the non-disordered parts of the protein crambin were
re®ned. (a) All re¯ections to 0.54 AÊ resolution. (b) Truncation at 1 AÊ

resolution. The different atom types can be distinguished (sulfur: squares;
oxygen: triangles; nitrogen: circles; carbon: crosses).

electronic reprint



computer programs

222 Benoit Guillot et al. � Refinement of proteins J. Appl. Cryst. (2001). 34, 214±223

On the other hand, at very high resolution (d < 0.9 AÊ ), the

diffraction essentially arises from the core electrons (Jelsch et

al., 1998). Thus, in the upper resolution ranges, the scattering

factors of the carbon, nitrogen and oxygen atoms are basically

similar, as there are two core electrons in all three cases. Thus,

when all re¯ections up to subatomic resolution are used, the

e.s.d.'s are less dissimilar for these three atom types (Fig. 8b).

Moreover, the e.s.d.'s diminish more in relative value for the

atoms with low thermal motion when the resolution is

increased from 1 to 0.54 AÊ . This correlates well with the fact

that the diffraction at subatomic resolution originates essen-

tially from the atoms with low thermal displacement para-

meters (B < 3 AÊ 2).

6. Conclusions

In the past, precise analyses of electronic distribution have

been restricted to small molecules, which generally satisfy the

necessary conditions of subatomic resolution and low thermal

motion. With the availability of third-generation synchrotron

X-ray beamlines, some protein diffraction data can now be

measured at subatomic resolution. The electron density

analysis of such macromolecules has thus become a feasible

challenge. Currently available multipolar re®nement

programs, dedicated to small molecules, would need a prohi-

bitively excessive amount of CPU time if applied to large

structures. Thus, the algorithmic optimizations and the paral-

lelization implemented inMOPRO were necessary in order to

re®ne the charge density of macromolecules, such as aldose

reductase, in a reasonable amount of computer time.

Provided that the protein atoms have standard names, a

transfer program is available to transform a SHELXL struc-

ture ®le into a MOPRO input ®le. The information contained

in the database of multipolar parameters (Pichon-Pesme et al.,

1995), notably the de®nition of the local axis system, is directly

transferred to the MOPRO input ®le containing the coordi-

nates, the thermal displacement and charge density para-

meters. These improvements, in conjunction with the

implementation of restraints necessary in macromolecular

crystallography, make the programMOPRO a reliable tool for

protein charge density analysis.

APPENDIX A

The conjugate gradient algorithm

The starting conditions of the iterative procedure applied in

MOPRO to solve equation (5) are

p0 � r0 � bÿA �x0; �11�

where �x0 is the initial parameters vector shift, usually set to

zero. The following iterative process is repeated to obtain

successive estimations of the parameters shift �xi:

�i � �rTi ri�=�p
T
i Api�; �12�

�xi�1 � �xi � �i pi; �13�

ri�1 � ri ÿ �i Api; �14�

�i�1 � �rTi�1 ri�1�=�r
T
i ri�; �15�

pi�1 � ri�1 � �i�1 pi; �16�

where pi is the direction of search in the parameter space at

the ith iteration and ri is equal to the residual b ÿ A�xi at the

ith iteration.

The convergence is assumed to be reached when the resi-

dual norm ri is a signi®cantly small fraction " of the initial

residual norm r0. The tolerance term " is de®ned by the user

and was set to 10ÿ6.

APPENDIX B

Matrix preconditioning

To apply the matrix preconditioning, the matrix P can be

decomposed according to the Cholesky factorization:

P � LLT : �17�

The system of equations (5) can then be rewritten

Lÿ1 ALTÿ1 �LT�x� � Lÿ1 b: �18�

The conjugate gradient procedure can be rewritten according

to the previous equation, with A, �x and b replaced by

Lÿ1ALTÿ1, LT�x and Lÿ1b, respectively, but these equations

have the disadvantage that L and Lÿ1 must be computed and

that the solution �x0 must be transformed into the original set

of parameters by the transformation �x = (LT)ÿ1�x0. However,

after application of the following variables substitution,

�x0 � LT�x; r0 � Lÿ1 r; p0 � LT p; �19�

and with LTÿ1Lÿ1 = Pÿ1, the procedure can be rewritten in a

form in which only Pÿ1 is needed. The initial conditions are

r0 � bÿAx0; p0 � Pÿ1 r0: �20�

The preconditioned conjugate gradient iterative procedure is

then unchanged for equations (13) and (14), while the equa-

tions (12), (15) and (16) are modi®ed into

�i � rTi P
ÿ1 ri=p

T
i Api; �21�

�i�1 � rTi�1 P
ÿ1 ri�1=r

T
i P

ÿ1 ri; �22�

pi�1 � Pÿ1 ri�1 � �i�1 pi: �23�
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