A few reminders about crystallographic standard notation and symbols

Massimo Nespolo, Université de Lorraine, France
massimo.nespolo@univ-lorraine.fr

Unit cells

A unit cell is identified by the translations from a lattice node arbitrarily take as the origin to all lattice nodes on or in the unit cell.

$$
\begin{aligned}
& t(1,0,0), \\
& t(0,1,0) \\
& t(0,0,1)
\end{aligned}
$$

$$
\begin{aligned}
& t(1,0,0) \\
& t(0,1,0) \\
& t(0,0,1) \\
& t(1 / 2,1 / 2,0) \\
& \\
&
\end{aligned}
$$

Unit cells

For some unit cells, more often adopted, a letter is used which allows to avoid specify the translations

$$
\begin{aligned}
& t(1,0,0), t(0,1,0), t(0,0,1): P \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(0,1 / 2,1 / 2): A \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(1 / 2,0,1 / 2): B \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(1 / 2,1 / 2,0): C \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(1 / 2,1 / 2,1 / 2): I \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(0,1 / 2,1 / 2), t(1 / 2,0,1 / 2), t(1 / 2,1 / 2,0): F \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(2 / 3,1 / 3,1 / 3), t(1 / 3,2 / 3,2 / 3): R \text { (obverse setting) } \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(2 / 3,1 / 3,2 / 3), t(1 / 3,2 / 3,1 / 3): R \text { (reverse setting) } \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(2 / 3,1 / 3,0), t(1 / 3,2 / 3,0): H \\
& t(1,0,0), t(0,1,0), t(0,0,1), t(1 / 3,1 / 3,1 / 3), t(2 / 3,2 / 3,2 / 3): D
\end{aligned}
$$

Unit cells

Problem: how to identify a primitive unit cell?
$t(1,0,0), t(0,1,0), t(0,0,1): P$
But we do not know how the translations are oriented in space!
We need a reference with respect to which any primitive unit cell can be uniquely defined

Solutions:
1.The conventional unit cell (uniquely defined only from orthorhombic symmetry upwards)
2.An orthonormal unit cell (whose edges do not connect lattice nodes, in general)
3.The reduced unit cell, of which we have two types: type I: $a \leq b \leq c$, all acute angles
type II: $a \leq b \leq c$, all non-acute angles

Conventional unit cell

For each lattice, the conventional cell is the cell obeying the following conditions:
1.its basis vectors define a right-handed axial setting;
2.its edges are along symmetry directions of the lattice;
3.it is the smallest cell compatible with the above condition.

Triclinic crystals do not have symmetry directions: the conventional unit cell is not defined
Monoclinic crystals have only one symmetry direction: the conventional unit cell is not uniquely defined

C121

A121

I121

A monoclinic angle between 90 and 120° is usually preferred

Conventional unit cell

Symbols

a,b,c:	basis vectors (bold)
$a, b, c:$	cell parameters (italics)
$u v w$	Coordinates of a lattice node
$[u v w]$	Indices of direction in direct space
$[U V T W]$	Weber indices for hexagonal lattice (forget them!)
$\langle u v w\rangle$	Indices of a set of directions crystallographically equivalent in direct space
$[u v w]^{*}$	Indices of direction in reciprocal space $(h k l)$ $(h k i l)$
Miller indices of a family of lattice planes Bravais-Miller indices of a family of lattice planes for the hexagonal lattice	
$\{h k l\}$	Miller indices of a crystal form (set of equivalent families of lattice planes)
$\{h k i l\}$	Bravais-Miller indices of a crystal form for the hexagonal lattice Laue indices of a diffraction, coordinates of a reciprocal lattice
$h k l$	node (no parentheses!)
$(h k l)^{*}$	Miller indices of a family of planes in reciprocal space

Elementary geometrical model of diffraction

$$
n \lambda=2 d_{h k l} \sin \vartheta_{h k l}
$$

One-dimensional grid

Spherical waves originate at each point of a periodic grid and interfere positively when their phase differs by an integer number of wavelengths. A difference of \boldsymbol{n} wavelengths corresponds to diffraction of order \boldsymbol{n}.
Diffraction $n h, n k, n l$ (Laue indices, no parentheses) is the n-order diffraction from plane ($h k l$) (Miller indices, with parentheses).

Coordinates of lattice nodes, direction indices [$u v$]

Coordinates of lattice nodes, direction indices [uv]

$\rightarrow[10] \quad \nabla^{1 / 2[11]}$

Why is it important to use correct indexing?

$\mathbf{a}_{P}=\left(\mathbf{a}_{C}+\mathbf{b}_{C}\right) / 2$	$\mathbf{a}_{C}=\mathbf{a}_{P}-\mathbf{b}_{P}$
$\mathbf{b}_{P}=\left(-\mathbf{a}_{C}+\mathbf{b}_{C}\right) / 2$	$\mathbf{b}_{C}=\mathbf{a}_{P}+\mathbf{b}_{P}$
$\mathbf{c}_{P}=\mathbf{c}_{C}$	$\mathbf{c}_{C}=\mathbf{c}_{P}$

Miller indices

The values h, k and l are called the Miller indices of the lattice plane and give its orientation.

All lattice planes in the same family have the same orientation $\rightarrow(h k l)$ represents the whole family of lattice planes.

Parametric equation of the plane:
$x / p+y / q+z / r=1$
$(q r) x+(p r) y+(p q) z=p q r$
$h x+k y+l z=m$
Making m variable, we obtain a family of lattice planes, ($h k l$), where h, k and l are called the Miller indices.

First plane of the family $(h k l)$ for $m=1$ $h x+k y+l z=1$

Intercepts of the first plane of the family $(h k l)$ on the axes
$p=p q r / q r=m / q r=1 / h$
$q=p q r / \mathrm{pr}=m / p r=1 / k$
$r=p q r / p q=m / p q=1 / l$

Miller indices for different types of lattice : (h00) in oP and oC (projection on ab)

In morphology, we do not see the lattice and thus the Miller indices of a face are usually coprime integers

Why is it important to use correct indexing?

Classification of reflection conditions

- General: apply to all Wyckoff positions.
- Special: : apply to special Wyckoff positions. In particular, in presence of non-characteristic and extraordinary orbits one gets additional special reflection conditions.
- Integral: appear when a non-primitive unit cell is selected.
- Zonal: appear in presence of glide planes.
- Serial: appear in presence of screw axes.

Warning!
Systematie extinctions
Systematic absences (actually, presences!)
Reflection conditions

Integral reflection condition: depend on the choice of the unit cell, not on the structure

When you choose a primitive unit cell you do not see integral reflection conditions

Zonal reflection conditions: witness of glide planes

Zonal reflection conditions: witness of glide planes

Direct space
In projection along the \mathbf{a} axis the period along \mathbf{b} seems halved

Reciprocal space
On the $(0 k l)^{*}$ plane the period along the \mathbf{b}^{*} axis appears doubled.

Reflection conditions : $0 k l: k=2 n$

Serial reflection conditions: witness of screw axes

Subperiodic groups

Dimension of the space Periodicity of the object Type of group

1	0	$\mathrm{G}^{1}{ }_{0}$: 1D-point group
1	1	G_{1}^{1} : line group
2	0	G^{2} : 2 D -point group
2	1	G^{2} : frieze group (2D monoperiodic group)
2	2	G_{2} : plane group
3	0	G^{3} : 3D-point group
3	1	$\mathrm{G}^{3}{ }_{1}$: rod group (3D monoperiodic group)
3	2	G^{3} : layer group (3D diperiodic group)
3	3	$\mathrm{G}_{3}{ }_{3}$: space group

