

A few reminders about crystallographic standard notation and symbols

Massimo Nespolo, Université de Lorraine, France massimo.nespolo@univ-lorraine.fr

Unit cells

A unit cell is identified by the translations from a lattice node arbitrarily take as the origin to all lattice nodes on or in the unit cell.

Unit cells

For some unit cells, more often adopted, a letter is used which allows to avoid specify the translations

t(1,0,0), t(0,1,0), t(0,0,1): P

 $t(1,0,0), t(0,1,0), t(0,0,1), t(0,\frac{1}{2},\frac{1}{2}): A \longrightarrow$

 $t(1,0,0), t(0,1,0), t(0,0,1), t(\frac{1}{2},0,\frac{1}{2}): B \longrightarrow S$

 $t(1,0,0), t(0,1,0), t(0,0,1), t(\frac{1}{2},\frac{1}{2},0): C$

 $t(1,0,0), t(0,1,0), t(0,0,1), t(\frac{1}{2},\frac{1}{2},\frac{1}{2}): I$

 $t(1,0,0), t(0,1,0), t(0,0,1), t(0,\frac{1}{2},\frac{1}{2}), t(\frac{1}{2},0,\frac{1}{2}), t(\frac{1}{2},\frac{1}{2},0) : F$

 $t(1,0,0), t(0,1,0), t(0,0,1), t(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}), t(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) : R$ (obverse setting)

 $t(1,0,0), t(0,1,0), t(0,0,1), t(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}), t(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}) : R$ (reverse setting)

 $t(1,0,0), t(0,1,0), t(0,0,1), t(\frac{2}{3},\frac{1}{3},0), t(\frac{1}{3},\frac{2}{3},0): H$

 $t(1,0,0), t(0,1,0), t(0,0,1), t(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), t(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}): D$

Unit cells

Problem: how to identify a primitive unit cell?

```
t(1,0,0), t(0,1,0), t(0,0,1): P
```

But we do not know how the translations are oriented in space!

We need a reference with respect to which any primitive unit cell can be uniquely defined

Solutions:

- 1.The **conventional** unit cell (uniquely defined only from orthorhombic symmetry upwards)
- 2.An **orthonormal** unit cell (whose edges do not connect lattice nodes, in general)
- 3. The **reduced** unit cell, of which we have two types:

type I: $a \le b \le c$, all acute angles

type II: $a \le b \le c$, all non-acute angles

Conventional unit cell

For each lattice, the conventional cell is the cell obeying the following conditions:

- 1.its basis vectors define a right-handed axial setting;
- 2.its edges are along symmetry directions of the lattice;
- 3.it is the smallest cell compatible with the above condition.
- Triclinic crystals do not have symmetry directions: the conventional unit cell is not defined
- Monoclinic crystals have only one symmetry direction: the conventional unit cell is not uniquely defined

A monoclinic angle between 90 and 120° is usually preferred

Conventional unit cell

Symbols

a,b,c:	basis vectors (bold)
<i>a,b,c</i> :	Coordinates of a lattice node
	Indiana of direction in direct anona
	marces of direction in direct space
$\begin{bmatrix} UVTW \end{bmatrix}$	Weber indices for hexagonal lattice (forget them!)
$\langle uvw \rangle$	Indices of a set of directions crystallographically equivalent in
	direct space
$[uvw]^*$	Indices of direction in reciprocal space
(<i>hkl</i>)	Miller indices of a family of lattice planes
(hkil)	Bravais-Miller indices of a family of lattice planes for the
	hexagonal lattice
$\{hkl\}$	Miller indices of a crystal form (set of equivalent families of
	lattice planes)
{hkil}	Bravais-Miller indices of a crystal form for the hexagonal lattice
ĥkl	Laue indices of a diffraction. coordinates of a reciprocal lattice
	node (no parentheses!)
(hk)*	Miller indices of a family of planes in reciprocal space
	winter indices of a failing of planes in recipiocal space

Elementary geometrical model of diffraction

Spherical waves originate at each point of a periodic grid and interfere positively when their phase differs by an integer number of wavelengths. A difference of n wavelengths corresponds to diffraction of order n.

Diffraction *nh*,*nk*,*nl* (Laue indices, no parentheses) is the *n*-order diffraction from plane (*hkl*) (Miller indices, with parentheses).

Coordinates of lattice nodes, direction indices [*uv*]

Coordinates of lattice nodes, direction indices [*uv*]

https://doi.org/10.1107/S1600576717010548

Massimo Nespolo, Université de Lorraine

Why is it important to use correct indexing?

[200] is **NOT** correct as a lattice direction, because 200 is not the first lattice node on that direction

Miller indices

The values h, k and l are called the **Miller indices** of the lattice plane and give its **orientation**.

All lattice planes in the same family have the same orientation \rightarrow (*hkl*) represents the whole family of lattice planes.

Parametric equation of the plane: x/p + y/q + z/r = 1

$$(qr)x + (pr)y + (pq)z = pqr$$
$$hx + ky + lz = m$$

Making *m* variable, we obtain a *family* of lattice planes, (hkl), where *h*, *k* and *l* are called the Miller indices.

First plane of the family (*hkl*) for m = 1hx + ky + lz = 1

Intercepts of the first plane of the family (*hkl*) on the axes p = pqr/qr = m/qr = 1/hq = pqr/pr = m/pr = 1/kr = pqr/pq = m/pq = 1/l

Miller indices for different types of lattice : (h00) in oP and oC (projection on ab)

In morphology, we do not see the lattice and thus the Miller indices of a **face** are usually coprime integers

http://dx.doi.org/10.1107/S1600576715011206

Why is it important to use correct indexing?

 $\mathbf{a}_{C} = \mathbf{a}_{P} - \mathbf{b}_{P}$ ${\bf a}_{P} = ({\bf a}_{C} + {\bf b}_{C})/2$ $\mathbf{b}_{C} = \mathbf{a}_{P} + \mathbf{b}_{P}$ $\mathbf{b}_{P} = (-\mathbf{a}_{C} + \mathbf{b}_{C})/2$ $\mathbf{c}_{C} = \mathbf{c}_{P}$ $\mathbf{c}_p = \mathbf{c}_C$ $\left(\mathbf{a}_{C} \mathbf{b}_{C} \mathbf{c}_{C} \right) = \left(\mathbf{a}_{P} \mathbf{b}_{P} \mathbf{c}_{P} \right) \left(\begin{array}{c} \frac{1}{10} \\ 100 \\ 001 \end{array} \right) \qquad \left(\mathbf{a}_{P} \mathbf{b}_{P} \mathbf{c}_{P} \right) = \left(\mathbf{a}_{C} \mathbf{b}_{C} \mathbf{c}_{C} \right) \left(\begin{array}{c} \frac{1}{2} \frac{1}{2} 0 \\ \frac{1}{2} \frac{1}{2} 0 \\ 0 & 0 \\ 1 \end{array} \right)$ $(h_C k_C l_C) = (h_P k_P l_P) \begin{pmatrix} \frac{1}{10} \\ 100 \\ 001 \end{pmatrix} (h_P k_P l_P) = (h_C k_C l_C) \begin{pmatrix} \frac{1}{2} \frac{1}{2} 0 \\ \frac{1}{2} \frac{1}{2} 0 \\ 0 01 \end{pmatrix}$ $(020) = (110) \begin{pmatrix} \frac{1}{1} 10 \\ 100 \\ 001 \end{pmatrix} \qquad (\frac{1}{2} \frac{1}{2} 0) = (010) \begin{pmatrix} \frac{1}{2} \frac{1}{2} 0 \\ \frac{1}{2} \frac{1}{2} 0 \\ 0 01 \end{pmatrix}$

 $(110)_P \rightarrow (020)_C$

 \mathbf{b}_{P}

 \mathbf{a}_{P}

 \mathbf{a}_{C}

 \mathbf{b}_{C}

Miller indices are **NEVER** fractional (a fractional index means that the plane taken as reference is not the first one of the family!)

Classification of reflection conditions

- General: apply to all Wyckoff positions.
- **Special**: : apply to special Wyckoff positions. In particular, in presence of non-characteristic and extraordinary orbits one gets additional special reflection conditions.
- **Integral**: appear when a non-primitive unit cell is selected.
- **Zonal**: appear in presence of glide planes.
- **Serial**: appear in presence of screw axes.

Warning!

Systematic absences (actually, presences!) Reflection conditions

Integral reflection condition: depend on the choice of the unit cell, not on the structure

When you choose a primitive unit cell you do not see integral reflection conditions

https://doi.org/10.1107/S1600576715011206

Zonal reflection conditions: witness of glide planes

Zonal reflection conditions: witness of glide planes

Direct space In projection along the **a** axis the period along **b** seems halved **Reciprocal space** On the (0kl)*plane the period along the **b*** axis appears doubled.

Reflection conditions : 0kl : k = 2n

Serial reflection conditions: witness of screw axes

https://doi.org/10.1107/S1600576715011206

Massimo Nespolo, Université de Lorraine

Subperiodic groups

Dimension of the space	Periodicity of the object	Type of group
1	0	G ¹ ₀ : 1D-point group
1	1	G ¹ ₁ : line group
2	0	G ² ₀ : 2D-point group
2	1	G_{1}^{2} : frieze group
	•	(2D monoperiodic group)
2	2	G ² ₂ : plane group
3	0	G ³ ₀ : 3D-point group
3	1	G_1^3 : rod group
		(3D monoperiodic group)
3	2	G_2^3 : layer group
		(3D diperiodic group)
3	3	G_{3}^{3} : space group

Massimo Nespolo, Université de Lorraine