
Bastien Mussard, Peter Reinhardt, János G. Ángyán, and Julien Toulouse

Citation: The Journal of Chemical Physics 142, 219901 (2015); doi: 10.1063/1.4921987
View online: http://dx.doi.org/10.1063/1.4921987
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/21?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in
Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange

Bastien Mussard,1,2,3,a) Peter Reinhardt,2,3 János G. Ángyán,4,5 and Julien Toulouse2,3,b)
1Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris, France
2Laboratoire de Chimie Théorique, F-75005 Paris, France
3CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
4CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandœuvre-lès-Nancy, France
5CRM2, Institut Jean Barriol, CNRS, F-54506 Vandœuvre-lès-Nancy, France

(Received 19 May 2015; accepted 21 May 2015; published online 4 June 2015)

After publication of our article,1 we realized that the expressions for the antisymmetrized direct RPA (dRPA-II) and antisymmetrized RPA with exchange (RPAx-II) correlation energies, shown in Eqs. (2) and (4) of the article,1 should take the following forms (previously published in Ref. 2):

\[
E_{\text{c,RPA-II}} = \frac{1}{2} \int_0^1 d\tau \, \text{tr} \left[\frac{1}{2} Q^{\text{dRPA}}_\alpha (A^I_\alpha + B^I_\alpha) + \frac{1}{2} (Q^{\text{dRPA}}_\alpha)^{-1} (A^I_\alpha - B^I_\alpha) - A^{\text{dRPA}}_1 \right]
\]

(1)

and

\[
E_{\text{c,RPAx-II}} = \frac{1}{4} \int_0^1 d\tau \, \text{tr} \left[\frac{1}{2} Q^{\text{RPAx}}_\alpha (A^I_\alpha + B^I_\alpha) + \frac{1}{2} (Q^{\text{RPAx}}_\alpha)^{-1} (A^I_\alpha - B^I_\alpha) - A^{\text{RPAx}}_1 \right],
\]

(2)

where the matrix \(Q_\alpha \) is defined as follows:

\[
Q_\alpha = (A_\alpha - B_\alpha)^{1/2} (M_\alpha)^{-1/2} (A_\alpha - B_\alpha)^{1/2}
\]

(3)

with matrices \(A^I_\alpha \) and \(B^I_\alpha \) used to construct \(Q^{\text{dRPA}}_\alpha \) and matrices \(A^{\text{RPAx}}_\alpha \) and \(B^{\text{RPAx}}_\alpha \) used to construct \(Q^{\text{RPAx}}_\alpha \). Note that the matrices \(A^I_\alpha \), \(A^{\text{RPAx}}_\alpha \), \(B^I_\alpha \), and \(B^{\text{RPAx}}_\alpha \), as well as \(M_\alpha \), are defined in our article1 but that, on the other hand, the matrix \(A^{\text{dRPA}}_1 \) appearing in Eqs. (1) and (2) of this erratum needs to be defined here,

\[
(A^{\text{dRPA}}_1)_{ia,jb} = \alpha \langle ib|\alpha j \rangle.
\]

(4)

It differs from \(A^{\text{RPAx}}_1 \) in that it does not contain the differences of spin-orbital energies.

All results shown in the original article were obtained using Eqs. (1) and (2) of this erratum and are thus correct.

Note that the matrices \(Q_\alpha \) are related to the matrices \(P_{c,\alpha} \) that appear in our article1 by \(P_{c,\alpha} = Q_\alpha - I \) (where \(I \) is the identity matrix) and that one can make the following approximations to the matrices \(Q^{-1}_\alpha \), as explained in Ref. 2:

\[
(Q^{\text{dRPA}}_\alpha)^{-1} = (I + P_{c,\alpha}^{\text{dRPA}})^{-1} \approx I - P_{c,\alpha}^{\text{dRPA}} = 2 I - Q^{\text{dRPA}}_\alpha
\]

(5)

and

\[
(Q^{\text{RPAx}}_\alpha)^{-1} = (I + P_{c,\alpha}^{\text{RPAx}})^{-1} \approx I - P_{c,\alpha}^{\text{RPAx}} = 2 I - Q^{\text{RPAx}}_\alpha
\]

(6)

which lead to the so-called “IIa” approximations to the dRPA-II and RPAx-II correlation energies,

\[
E_{\text{c,dRPA-IIa}} = \frac{1}{2} \int_0^1 d\tau \, \text{tr} [B^{\text{dRPA}}_1 P_{c,\alpha}^{\text{dRPA}}],
\]

(7)

\[
E_{\text{c,RPAx-IIa}} = \frac{1}{4} \int_0^1 d\tau \, \text{tr} [B^{\text{RPAx}}_1 P_{c,\alpha}^{\text{RPAx}}].
\]

(8)

These are the expressions that were erroneously shown in the original article.

a)Electronic mail: bastien.mussard@upmc.fr
b)Electronic mail: julien.toulouse@upmc.fr

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 193.50.135.4 On: Fri, 18 Dec 2015 16:02:50