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A new route to apply the charge distribution (CHARDI) method to structures

based on heteroligand coordination polyhedra is presented. The previous

algorithm used scale factors computed in an iterative way based on the

assumption (which turned out to be not always correct) that a real over–under

bonding effect affects mainly the anionic charges of each single anion, without

grossly modifying the total charge of each type of anion. The new, more general

approach is not based on any a priori assumption but treats separately the

homoligand sub-polyhedra and attributes to each type of atom a fraction of the

charge of the atom coordinated to it, computed in a self-consistent iterative way.

The distinction between the bonding and non-bonding contact is also redefined

in terms of the mean fictive ionic radii (MEFIR), without the need of an

empirical parameter, used in the previous algorithm. CHARDI equations are

generalized in terms of the new approach and a series of examples is presented.

1. Introduction

Charge distribution (Hoppe et al., 1989; Nespolo et al., 1999,

2001; Eon &Nespolo, 2015), usually shortened as CHARDI, is

the most recent extension of Pauling’s (1929) concept of bond

strength. It fundamentally differs from approaches based on

the R–s curves like the bond valence (BV) method (Brown,

1978) by adopting a Madelung-type (point-charge) description

of crystal structures which does not need the use of empirical

parameters frequently redefined and re-refined on which

instead the BV method depends (Bosi, 2014a,b; Gagné &

Hawthorne, 2015). To assign a strength to each bond,

CHARDI directly exploits the bond distances in each coor-

dination polyhedron: the bond strength, called bond weight

here, is a function of the ratio of each bond length to the

minimal bond length in the same polyhedron. The bond

weight is therefore a dimensionless geometric concept which is

then used to distribute the formal oxidation number (the

‘charge’) of each atom to its neighbours. The advantage of the

CHARDI approach is precisely the direct use of experimental

bond lengths without empirical parameters. On the other

hand, the Madelung-type approach in which each atom is

described as a point charge makes less straightforward the

treatment of heteroligand polyhedra, i.e. polyhedra having

chemically different atoms, and thus possibly significantly

different size, at their corners (Mohri, 2000). We have

previously overcome this problem by the introduction of scale

factors computed through an iterative procedure that makes

them independent from the definition of atomic or ionic

radius, and is formally reminiscent of the iterative calculation

of bond valences that Brown (1977) adopted to apply his

‘equal valence rule’. This gave satisfactory results in the
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classical description of crystal structures where electropositive

atoms (‘cations’) are at the centre and electronegative atoms

(‘anions’) at the corner of the polyhedra (Nespolo et al., 2001).

The recent generalization of the algorithm to treat structures

better described in terms of anion-centred polyhedra (Eon &

Nespolo, 2015), called ‘reverse’ structures by Beck (2014) – as

opposite to ‘direct’ structures based on cation-centred poly-

hedra – led us to reconsider this problem in an effort to obtain

a more general and satisfactory treatment of heteroligand

polyhedra bringing atoms of largely different size at their

corners. After a short presentation of the method, we show

that the dual description as cation-centred and anion-centred

proves to be the clue for a satisfactory treatment of these

structures.

In the presentation below a relatively large number of

symbols is used. To improve the readability of the text, we

present a short glossary of symbols and terms used in

following text.

1.1. Glossary of symbols and terms

PC(ij): an atom inside a coordination polyhedron, of the ith

chemical species and the jth crystallographic type.

V(rs): an atom at the corner (vertex) of a coordination

polyhedron, of the rth chemical species and the sth crystal-

lographic type.

R(i), R(r): the ionic radii of PC(ij) and V(rs), respectively

(which do not depend on the crystallographic type j or s).

h(ij), h(rs): the multiplicity of the Wyckoff position occu-

pied by PC(ij) and V(rs), respectively.

q(ij), q(rs): the formal oxidation number (‘charge’) of PC(ij)

and V(rs), respectively; these are input values of the CHARDI

algorithm.

Q(ij), Q(rs): the charge of PC(ij) and V(rs), respectively,

computed as the result of the distribution of q(ij) and q(rs);

these are output values of the CHARDI algorithm.

d(ij ! rs)L: the Lth distance between PC(ij) and V(rs),

listed in increasing order.

FIR(ij ! rs)L: the fictive ionic radius corresponding to d(ij

! rs)L.

MEFIR(ij ! r): the mean fictive ionic radius of PC(ij) in

the coordination sub-polyhedron having only V atoms of the

rth chemical species at its corners.

MEFIR(ij): the mean fictive ionic radius of PC(ij) in the

whole coordination polyhedron.

d(ij ! r): the weighted average distance between PC(ij)

and the V atoms of the rth chemical species to which it is

coordinated.

w(ij ! rs)L: the weight of the Lth distance between PC(ij)

and V(rs) (‘bond strength’ in the CHARDI approach).

ECoN(ij ! r): the effective coordination number of PC(ij)

with respect to Vatoms of the rth chemical species to which it

is coordinated.

ECoN(ij): the effective coordination number of PC(ij) with

respect to all the V atoms to which it is coordinated.

�ECoN(ij ! rs): the fraction of ECoN(ij ! r) coming

from the V atom of the sth crystallographic type.

�q(ij ! rs): the fraction of q(ij) received by V(rs).

�Q(i ! rs): the fraction of charge that each Vatom shares

with the ith chemical species of PC atom.

�Q(ij ! r): the fraction of charge that each PC-atom

shares with the rth chemical species of V atom.

2. FIR, MEFIR and ECoN

Atoms in a crystal structure are classified in ‘polyhedron-

centring atoms’ (PC atoms) and ‘vertex (corner) atoms’ (V

atoms) (Eon & Nespolo, 2015). The assignment of cations or

anions to each of the two categories can be done inter-

changeably.

PC atoms and V atoms are indicated as PC(ij) and V(rs),

respectively, where i and r identify the atomic site, j and s the

crystallographic type. For example, in the structure of potas-

sium selenotrithionate, K2SeS2O6, analysed below, the asym-

metric unit contains one formula unit, with two

crystallographic types of K and S each, one of Se and six of O.

By treating cations as PC atoms ij takes the four values 11, 12,

21 and 22 for K1, K2, S1 and S2, and rs takes seven values 11

and 21 to 26 for Se and O1 to O6. If the anions are treated as

PC atoms, the corresponding indices ij and rs are simply

exchanged.

The formal charges (which become weighted average

charges in the case of isomorphic substitutions) are indicated

as q(ij) and q(rs) and depend on j or s through the site

occupation factor (sof): for sof = 1, all the PC atoms with the

same i, as well as all the V atoms with the same r, have the

same q. Similarly, the multiplicity of the Wyckoff position is

indicated as h(ij) and h(rs). The Lth bond length between

PC(ij) and V(rs) is indicated as d(ij ! rs)L. For computational

purposes, the bond lengths are ordered in increasing length

with respect to i, j and r, d(ij ! rs)1 being the shortest one and

s a sort of dummy index at this stage.

Pauling’s (1929) statement that in ionic compounds the

distance between two bonded ions with charges of opposite

sign should be nearly identical to the sum of the ionic radii

R(i) and R(r) was generalized by Hoppe (1979) with the

introduction of the fictive ionic radii FIR(ij ! rs)L concept,

defined as

FIR ij ! rsð ÞL ¼ d ij ! rsð ÞL � R ið Þ
R ið Þ þ R rð Þ : ð1Þ

In the case of uniform coordination polyhedra,1 all the

FIR(ij ! rs)L are identical and the deviation from the ionic

radius may be read as a measure of the departure from the

pure ionic character of the bond. For non-uniform polyhedra,

instead, the concept of ionic radius is less well defined;

accordingly, a different FIR is assigned to each bond, which is

then used to compute a weighted average, the MEFIR.

Concretely, an ion at the centre of a uniform polyhedron can

be described as a sphere whose dimension, FIR, is directly
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related to the ionic radius, R(i). For non-uniform polyhedra,

instead, the ionic radius shows a dependence on the direction,

which leads to a polyhedral shape for the atomic basins

(Pendás et al., 1998). The computation of MEFIR corresponds

to assigning to the ion a spherical basin whose radius is a

weighted average of the ionic radius for each direction.

MEFIR is calculated through a convergent iterative process

nMEFIR ij ! rð Þ

¼
P

s

P
L FIR ij ! rsð ÞL � exp 1� FIR ij!rsð ÞL

n�1MEFIR ij!rð Þ

h i6� �
P

s

P
L exp 1� FIR ij!rsð ÞL

n�1MEFIR ij!rð Þ

h i6� � ; ð2Þ

where n is the number of iterations and where the starting

value, 0MEFIR(ij ! r), is simply FIR(ij ! rs)1. The expo-

nential term is responsible for the asymptotic decrease of the

contribution of each FIR with increasing bond distance.

MEFIR gives a quantitative meaning to the rule of mutual

influence (Beck, 2014) of different cations on their seeming

size and polarity, according to which the size of an ion depends

on the chemical relations with its neighbours.

The concepts of FIR and MEFIR have been introduced for

ionic bonds but they do also apply to polar bonds. According

to Pauling’s (1960) classification, chemical bonds can be

divided into ionic, polar and non-polar depending on the

difference of the electronegativity of the bonded atoms, this

difference being respectively higher than 1.7, between 0.4 and

1.7, and lower than 0.4. For polar bonds, one could simply use

covalent radii instead of ionic radii in equation (1): FIR(ij !
rs)1 would then correspond to the covalent radius for bond

order 1, or be smaller than for higher bond orders. The

CHARDI treatment is actually independent of the type of

radii chosen.

FIR and MEFIR clearly aim at treating with a spherical

model atoms which are not necessarily spherical. The purpose

is to keep the description of a crystal structure as simple as

possible, with nevertheless some consideration of the effect of

the environment in which each atom is embedded. In the same

line, the classical definition of the coordination number of an

atom as ‘the number of other atoms directly linked to that

specified atom’ (IUPAC, 1997) becomes less and less satis-

factory with the distribution of bond distances over a large

interval, from uniform polyhedra to cavities which can hardly

be recognized as polyhedra, like in the typical example of

alkaline metals showing a very irregular coordination. These

considerations led Hoppe (1970) to call the coordination

number an ‘inorganic chameleon’ and generalize it to a

function of the weighted average of bond distances which he

called the effective coordination number, ECoN (Hoppe,

1979). A weighted mean distance nd(ij ! r) is computed

through a convergent iterative process similar to that used to

compute MEFIR

nd ij ! rð Þ ¼
P

s

P
L d ij ! rsð ÞL � exp 1� d ij!rsð ÞL

n�1d ij!rð Þ

h i6� �
P

s

P
L � exp 1� d ij!rsð ÞL

n�1d ij!rð Þ

h i6� � ;

ð3Þ

with 0d(ij ! r) = d(ij ! rs)1. The shortest PC—V distance in

each polyhedron is used as a normalizing parameter at the

zeroth stage of the iteration, to be replaced by the weighted

average until convergence is reached. This exponential term is

a measure of the bond strength and has been called the bond

weight (Nespolo et al., 2001) nw(ij ! rs)

nw ij ! rsð ÞL ¼ exp 1� d ij ! rsð ÞL

nd ij ! rð Þ
� �6

( )
: ð4Þ

Equation (3) can thus be rewritten as

nd ij ! rð Þ ¼
P

s

P
L d ij ! rsð ÞL � n�1w ij ! rsð ÞLP

s

P
L �n�1w ij ! rsð ÞL

: ð30Þ

The sum over the bond weights gives the ECoN(ij ! r)

ECoN ij ! rð Þ ¼
X

s

X
L

nw ij ! rsð ÞL: ð5Þ

If a structure contains only one type of V atom, one speaks of

homoligand polyhedra (Mohri, 2000): in that case, r = 1 and a

unique ECoN(ij) for each polyhedron is obtained from

equation (5).

ECoN, as a generalization of the classical coordination

number, is a real number that has to become equal to the

integer coordination number for uniform polyhedra. This is

the condition imposed to obtain the contraction parameter 6 in

the definition of the weight w(ij ! rs) as well as of MEFIR. It

was in fact obtained by finding the highest value giving an

ECoN equal to the number of first neighbours in the structure

of simple metals, where a clear separation between a first and a

second coordination sphere exists (Hoppe, 1979). For the very

special case of hydrogen bonds, where the ratio of two short

distances (donor–H and H–acceptor) with a high relative gap

made the weight w(ij ! rs) for the second bond negligible, a

revised contraction parameter of 1.6 has been introduced

(Nespolo et al., 2001).

Equations (3) and (4) can be rewritten in terms of FIR and

MEFIR. In fact, by replacing d(ij!rs)L with

FIR(ij!rs)L�[R(i)+R(r)]/R(i) we obtain immediately the

following equivalences.
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1d ij ! rð Þ ¼
P

s

P
L d ij ! rsð ÞL � exp 1� d ij!rsð ÞL

d ij!rsð Þ1

h i6� �
P

s

P
L � exp 1� d ij!rsð ÞL

d ij!rsð Þ1

h i6� � ¼

P
s

P
L FIR ij ! rsð ÞL

R ið ÞþR rð Þ
R ið Þ � exp 1� FIR ij!rsð ÞLR ið ÞþR rð Þ

R ið Þ
FIR ij!rsð Þ1R ið ÞþR rð Þ

R ið Þ

� �6
( )

P
s

P
L � exp 1� FIR ij!rsð ÞLR ið ÞþR rð Þ

R ið Þ
FIR ij!rsð Þ1R ið ÞþR rð Þ

R ið Þ

� �6
( ) ¼

P
s

P
L FIR ij ! rsð ÞL � exp 1� FIR ij!rsð ÞL

FIR ij!rsð Þ1

h i6� �
P

s

P
L � exp 1� FIR ij!rsð ÞL

FIR ij!rsð Þ1

h i6� � R ið Þ þ R rð Þ
R ið Þ ¼

1MEFIR ij ! rð ÞR ið Þ þ R rð Þ
R ið Þ ð6Þ

and by iteration

nd ij ! rð Þ ¼ nMEFIR ij ! rð ÞR ið Þ þ R rð Þ
R ið Þ ð7Þ

so that the bond weight too can be rewritten in terms of FIR

and MEFIR

nw ij ! rsð ÞL ¼ exp 1� d ij ! rsð ÞL

nd ij ! rð Þ
� �6

( )

¼ exp 1�
R ið ÞþR rð Þ

R ið Þ � FIR ij ! rsð ÞL

R ið ÞþR rð Þ
R ið Þ �nMEFIR ij ! rð Þ

" #6
8<
:

9=
;

¼ exp 1� FIR ij ! rsð ÞL

nMEFIR ij ! rð Þ
� �6

( )
: ð8Þ

Although the formulae look exactly equivalent, the results

significantly differ in the case of heteroligand polyhedra. If r

takes only one value (homoligand polyhedra), equations (4)

and (8) give exactly the same result. If instead r takes multiple

values, equation (4) has to be computed separately for each r

so that each heteroligand polyhedron is divided into homo-

ligand subpolyhedra, treated independently, while this is not

the case for equation (8). In fact, by using the bond lengths in

equations (3)–(5) one automatically selects a different

normalizing parameter (minimal distance) for each type of V

atom: it would make no sense to normalize bond lengths of a V

atom with respect to the shortest bond length of a different V

atom having in general a different size. It would also make no

sense to define a unique weighted mean distance nd(ij) by

making r in nd(ij ! r) variable over all the V atoms coordi-

nated by the same PC atom because the corresponding bond

distances can be significantly different so that global average

would overestimate bonds with smaller V atoms and under-

estimate bonds with larger V atoms. Accordingly, ECoN(ij !
r), equation (5), is defined unambiguously for each homo-

ligand subpolyhedron, and the resulting ECoN(ij ! r) are

then summed up to obtain ECoN(ij)

ECoN ijð Þ ¼
X

r
ECoN ij ! rð Þ ¼

X
r

X
s

X
L

nw ij ! rsð ÞL

ð9Þ

thus ignoring the effect of the size of the different V atoms at

this stage.

By using FIR, a global nMEFIR(ij) for each PC atom can be

defined because nMEFIR(ij!r) does not change significantly

as a function of r

nMEFIR ijð Þ ¼P
r

P
s

P
L FIR ij ! rsð ÞL � exp 1� FIR ij!rsð ÞL

n�1MEFIR ijð Þ

h i6� �
P

r

P
s

P
L exp 1� FIR ij!rsð ÞL

n�1MEFIR ijð Þ

h i6� � ð20Þ

nw ij ! rsð ÞL ¼ exp 1� FIR ij ! rsð ÞL

nMEFIR ijð Þ
� �6

( )
ð80Þ

Equation (20) allows treating all the PC—V distances in a

polyhedron at once; this however leads to neglecting the

differences between the various V atoms. In other words, it

corresponds to replacing each V atom with a dimensionless

charged point. While this does make sense in the calculation of

ECoN(ij), which simply gives a measure of the number of

coordinated V atoms weighted by the respective bond

distances, it would prevent any charge distribution analysis. In

fact, although every V atom retains its charge, the relation

between the bond distance and the strength of the bond would

be lost. There is, however, one aspect in which the use of FIR

and MEFIR instead of the individual and average distances

presents a clear advantage.

In a structure built on homoligand polyhedra, every PC(ij)

is bonded to V(1s) for some s and the minimal PC—V

distance, d(ij ! 1s)1, obviously corresponds to a chemical

bond between the two atoms. On the other hand, in a structure

containing heteroligand polyhedra not all the PC(ij) are

necessarily bonded to every V(rs). In other words, d(ij ! rs)1
for some r may correspond to a non-bonded contact. If the

distances are used directly, then d(ij ! rs)1 is scaled to itself in

the first step of the calculation of the average distance, d(ij !
r), and to avoid considering non-bonded contacts as chemical

bonds one needs an external criterion, like the sum of the radii

scaled by an expansion factor to allow some tolerance. This is

the somehow empirical solution we had adopted in the

previous version of the algorithm. If FIR and MEFIR are used

instead, each polyhedron is treated as a homoligand at this

stage and the risk of counting non-bonded contacts as

chemical bonds is avoided.

Concretely, in the analysis of the coordination polyhedra, a

first step is performed in term of FIR and MEFIR, equations

(20) and (80), to discriminate between bonding and non-

bonding contacts; then the calculation is repeated by using the

distances to treat each coordination sub-polyhedron sepa-

rately.
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3. Charge distribution

Once ECoN(ij ! r) has been obtained through equation (5),

it is distributed among all the bonds around the PC atom

defining a homoligand subpolyhedron, obtaining in this way

the contribution by each V atom to ECoN itself

�ECoN ij ! rsð Þ ¼
P

L
nw ij ! rsð ÞL

ECoN ij ! rð Þ : ð10Þ

In a correctly refined and well balanced structure, the distri-

bution of ECoN among the PC-—V bonds should sum up to

some expected value for both PC(ij) and V(rs). As an

expected value, the formal charge q(ij) is used as a scaling

parameter applied to �ECoN

�qðij ! rsÞ ¼ �ECoNðij ! rsÞqðijÞ ð11Þ
As discussed above, a single weighted mean distance nd(ij)

for each PC-atom cannot be defined, but only weighted mean

distances nd(ij ! r) for each PC—V atom pairs. To take into

account the presence of different V atoms in heteroligand

polyhedra, a scale factor F(ij ! r) was introduced in equation

(11) (Nespolo et al., 2001). Then, summing the �q(ij ! rs) on

the PC atoms about a Vatom, one should obtain the expected

‘charge’ of the V atom itself

QðrsÞ ¼ �
X

i

X
j

�qðij ! rsÞ hðijÞ
hðrsÞ : ð12Þ

The ratio of the multiplicities of the respective Wyckoff

positions, h(ij)/h(rs), is introduced to avoid counting multiple

contributions when a bond connects atoms on Wyckoff posi-

tions with different multiplicities.

A similar distribution is repeated the other way round and

summed up on the V atoms about a PC atom. This time,

however, instead of using q(rs) as the scaling parameter, in a

perfectly symmetrical way, the ratio q(rs)/Q(rs) for the V(rs)

bonded to PC(ij) is used

QðijÞ ¼
X

r

X
s

�ECoNðij ! rsÞ qðrsÞ
QðrsÞ

" #
qðijÞ

¼
X

r

X
s

�qðij ! rsÞ qðrsÞ
QðrsÞ : ð13Þ

If q(rs)/Q(rs) = 1 for each r and s, then the bracket in

equation (13) goes to 1 (it becomes the sum of the fractions of

ECoN about each PC atom) and thus Q(ij) = q(ij). This shows

that in a structure correctly solved and perfectly valence-

balanced the distribution of ECoN scaled by the formal

charges gives back these charges. On the other hand, when a

structure has developed some structural tensions, its V atoms

may not be perfectly balanced but the distribution of this

unbalance, measured by the ratio q(rs)/Q(rs), should give back

the expected formal charges on the PC atoms, otherwise the

whole set of coordination polyhedra would be unbalanced and

the structure would be unstable. In other words, CHARDI

possesses an internal criterion to evaluate the quality of its

analysis: the ratio q(ij)/Q(ij) for the PC atoms. When this ratio

is reasonably close to 1 for all the PC atoms, then the analysis

of the connectivity can be approached by the study of Q(rs),

which diverge from q(rs) proportionally to the structural

strains inside the structure. One speaks of the over–under-

bonding (OUB) effect (Nespolo et al., 1999, 2001). Quite

obviously, in the trivial case of a structure containing only one

type of Vatom there is nothing to distribute, Q(rs) is identical

to q(rs) and the CHARDI analysis simply does not give any

information.

As an overall measure of the agreement between q and Q

for the whole sets of PC atoms and of V atoms, the mean

absolute percentage deviation (MAPD) is used

MAPD ¼ 100

N

XN

i�1

qi � Qi

qi

����
����: ð14Þ

The generalization of the approach to anion-centred

structures and a wider set of tests has prompted us to recon-

sider the solution. Indeed, the scale factors adopted in the

previous version were computed in an iterative way assuming

that a real OUB effect affects mainly the anionic charges of

each single anion, but without grossly modifying the total

charge of each type of anion. However, if a single crystal-

lographic type of anion occurs in the structure (i.e. s = 1 for

some r) this procedure may force the expected charge on that

anion. We have therefore introduced a new route to treat

structures in a more correct manner with heteroligand poly-

hedra.

4. A new route to heteroligand polyhedra

In the case of the homoligand polyhedra (r = 1), every PC

atom distributes its charge to all the V atoms bonded to it, in

an inverse proportion to the bond length. In a heteroligand

polyhedra (r > 1), each PC atom distributes a fraction of its

charge to each homoligand subpolyhedron. This fraction

depends on the relative distances: V atoms closer to the PC

atom receive a larger fraction than V atoms farther from it.

The problem is how to define this fraction. This is straight-

forward for structures which are built by homoligand poly-

hedra in one of the two possible descriptions (cation-centred

or anion-centred), while it requires a convergence algorithm

when a structure is built by heteroligand polyhedra in both

descriptions.

4.1. Structures built by homoligand polyhedra in one
description

If a structure contains only one chemical species of cations

or of anions, the calculation is straightforward. The single type

of atom (cation or anion) is first assigned to V atoms and the

computation described above is performed. Next, the fraction

of Q(ij) from each V atom is calculated by a simple modifi-

cation of equation (13)
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�Qði ! rsÞ ¼
X

j

�qðij ! rsÞ qðrsÞ
QðrsÞ

hðijÞ
hðrsÞ

¼
P

j �ECoNðij ! rsÞhðijÞqðijÞ
QðrsÞhðrsÞ qðrsÞ: ð15Þ

The summation here is over j, i.e. the crystallographic type

of PC atom, rather than r and s. The result is thus the fraction

of the formal charge that each V atom (of chemical species r

and crystallographic type s) shares with the ith chemical

species of the PC atom. The role of PC atoms and V atoms is

then exchanged so that equation (15) gives in the next step

�Q(ij ! r), i.e. the fraction that each PC atom (Vatom in the

previous step) shares with each chemical species of the Vatom

(PC atom in the previous step)

�Qðij ! rÞ ¼ ��Qði ! rsÞ; ð16Þ

with the exchange r ! i, j ! s, i ! r. �Q(ij ! r) is then used

instead of q(ij) in equation (13), which is replaced by equation

(17)

QðijÞ ¼
X

r

X
s

�ECoNðij ! rsÞ qðrsÞ
QðrsÞ�Qðij ! rÞ: ð17Þ

Clearly, if r = 1, equation (17) reduces to equation (13).

4.2. Structures built by heteroligand polyhedra in both
descriptions

When a structure contains heteroligand polyhedra in both

descriptions, we miss the starting point to compute equation

(15). The problem is solved with an iterative procedure in

which the starting value of �Q(ij ! r) in equation (16) is

assigned as a function of ECoN(ij ! r)/ECoN(ij)

�Qðij ! rÞ ¼ qðijÞECoNðij ! rÞ
ECoNðijÞ ð160Þ

Equation (160) corresponds to Pauling’s definition of bond

strength (s = Q/N, N being the classical integer coordination

number) applied to each sub-polyhedron. From the second

step equations (15) and (16) can be used directly and the role

of PC and Vatoms is swapped back and forth between cations

and anions until the same values of �Q(ij ! r) are obtained

in each description, meaning that convergence has been

obtained.

5. Case analysis

In this section we analyse a few cases of charge distribution

applied to crystal structures and show that when a Madelung-

type description is possible then CHARDI provides a

powerful tool of structure validation. Unsatisfactory results on

correctly refined structures actually originate from the

departure of the structure under investigation from the simple

Madelung-type model. All the calculations have been

performed with a new version of the CHARDI software

(Nespolo et al., 2001), which is available at

http://www.crystallography.fr/chardi.

5.1. Laurelite: a structure based on anion-centred poyhedra

The structure of laurelite, Pb7Cl2F12, was reported by

Merlino et al. (1996) and is based on homoligand anion-

centred polyhedra but heteroligand cation-centred polyhedra.

The analysis starts with the homoligand description and is

given in Table 1. The results of the charge distribution analysis
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Table 1
Bond distances d (Å), FIR (Å) and bond weights w of laurelite (Merlino
et al., 1996) in the anion-centred description, where the structure is built
by homoligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs) w(ij ! rs)

Cl 1 �1 1 Pb 1 2 3 3.1597 � 2 1.759 � 2 1.001 � 2
Pb 1 2 3 3.1601 � 2 1.759 � 2 1.000 � 2
Pb 1 2 3 3.1605 � 2 1.759 � 2 0.999 � 2

Cl 2 �1 1 Pb 2 2 3 3.2103 � 2 1.787 � 2 1.001 � 2
Pb 2 2 3 3.2108 � 2 1.787 � 2 1.000 � 2
Pb 2 2 3 3.2111 � 2 1.787 � 2 0.999 � 2

F 1 �1 3 Pb 1 2 3 2.4723 1.146 1.173
Pb 2 2 3 2.5361 � 2 1.176 � 2 1.021 � 2
Pb 1 2 3 2.7215 1.262 0.610

F 2 �1 3 Pb 1 2 3 2.4405 � 2 1.132 � 2 1.179 � 2
Pb 2 2 3 2.6049 1.208 0.790
Pb 2 2 3 2.7048 1.254 0.578

F 3 �1 3 Pb 2 2 3 2.4717 1.146 1.490
Pb 3 2 1 2.7500 � 2 1.275 � 2 0.869 � 2
Pb 1 2 3 2.9885 � 2 1.386 � 2 0.416 � 2

F 4 �1 3 Pb 1 2 3 2.3998 1.113 1.206
Pb 3 2 1 2.4299 1.127 1.132
Pb 2 2 3 2.5991 � 2 1.205 � 2 0.732 � 2

Table 2
MEFIR (Å), average distance d (Å), ECoN and computed charges of
laurelite in the anion-centred description.

PC(ij) MEFIR(ij) d(ij) ECoN(ij) Q V(rs) Q �Q(i ! rs)

Cl 1 1.789 3.160 6.00 �1.02 Pb 1 1.95 Pb1—Cl 0.341
Cl 2 1.787 3.211 6.00 �1.01 Pb 2 1.99 Pb1—F 1.659
F 1 1.180 2.545 3.83 �1.01 Pb 3 2.18 Pb2—Cl 0.336
F 2 1.166 2.515 3.73 �1.02 Pb2—F 1.664
F 3 1.247 2.691 4.06 �0.97 Pb3—Cl –
F 4 1.152 2.484 3.80 �0.99 Pb3—F 2.0
MAPD 1.8 2.5

Table 3
Bond distances d (Å), FIR (Å) and bond weights of laurelite in the
cation-centred description, where the structure is built by heteroligand
polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij!rs) w(ij ! rs)

Pb 1 2 3 Cl 1 �1 1 3.1605 � 2 1.401 � 2 1.000 � 2
F 4 �1 3 2.3998 1.287 1.217
F 2 �1 3 2.4405 � 2 1.309 � 2 1.117 � 2
F 1 �1 3 2.4723 1.326 1.040
F 1 �1 3 2.7215 1.460 0.492
F 3 �1 3 2.9885 � 2 1.603 � 2 0.136 � 2

Pb 2 2 3 Cl 2 �1 1 3.2108 � 2 1.423 � 2 1.000�2
F 3 �1 3 2.4717 1.326 1.225
F 1 �1 3 2.5361 � 2 1.360 � 2 1.073 � 2
F 4 �1 3 2.5991 � 2 1.394 � 2 0.926 � 2
F 2 �1 3 2.6049 1.397 0.912
F 2 �1 3 2.7048 1.451 0.692

Pb 3 2 1 F 4 �1 3 2.4299 � 3 1.303 � 3 1.353 � 3
F 3 �1 3 2.7500 � 6 1.475 � 6 0.627 � 6
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(Table 2) are satisfactory, showing only a small OUB effect.

The values of �Q(i ! rs) in the last column of Table 2 are

used to compute the charge distribution of the cation-centred

description (coordination in Table 3) and the results are shown

in Table 4. They are imperfectly satisfactory for the PC atoms

and definitely unsatisfactory for the V atoms. The presence of

a very large cation (lead in this case) is one of the conditions

listed in Eon & Nespolo (2015) for a possible preferable

description of the structure as anion-centred: this is likely the

reason why the roles of cations and anions are exchanged with

respect to the classical, cation-centred description, with large

cations building the bulk of the framework and the anions

filling the holes of it. Furthermore, the structure representa-

tion shows that in the anion-centred description (Fig. 1) well

defined coordination polyhedra appear: almost perfectly

regular ClPb6 trigonal prisms, slightly deformed FPb4 tetra-

hedra for F1, F2 and F4, and a FPb5 polyhedron which can be

described as a deformed square pyramid with two longer

(3.98 Å) and two shorter (3.83 Å) basal Pb—Pb edges. This

coordination is much more regular than that based on the

cations (Fig. 2). However, as we are going to see in the case of

crocoite, a regular set of polyhedra cannot exist in a hetero-

ligand description with V atoms of largely different size and

valence, yet the structure may still be correctly described as

anion-centred.

5.2. Y2Cu2O5: a structure based on oxygen-centred poly-
hedra

Delafossite compounds, from the name of the prototype

mineral CuFeO2, belong to a family of ternary oxides with the

general formula ABO2, where the A cation (typically Pd, Pt,

Cu or Ag) is linearly coordinated to two oxygen ions and the B

cation (Ga, In, Al, Fe, Co, Y, La, Nd, Eu) is located in distorted

edge-sharing BO6 octahedra. The oxygen ion is in pseudo-

tetrahedral coordination with one A and three B cations

(Marquardt et al., 2006). Delafossites typically occur in two

polytypes: 2H and 3R, with space-group types P63/mmc and

R3m, respectively, containing only one type of anion. The

CHARDI algorithm does not convey any information when

applied to the cation-centred description, because when only
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Table 4
MEFIR (Å), average distance d (Å), ECoN and computed charges of
laurelite in the cation-centred description.

PC(ij) V(r)
MEFIR
(ij ! r) d(ij ! r)

ECoN
(ij ! r) ECoN(ij) Q r s Q

Pb 1 Cl 1.401 3.160 2.00 7.25 1.90 Cl 1 �1.02
F 1.334 2.489 5.25 Cl 2 �1.01

Pb 2 Cl 1.423 3.211 2.00 8.83 2.02 F 1 �1.01
F 1.377 2.567 6.83 F 2 �1.10

Pb 3 Cl – – – 7.82 2.24 F 3 �0.71
F 1.383 2.580 7.82 F 4 �1.18

MAPD 4.1 12.6

Figure 1
The structure of laurelite (Merlino et al., 1996) in the anion-centred
description. The two Cl atoms are at the centre of trigonal prisms, F1, F2
and F4 of tetrahedra, F3 of a square pyramid (polyhedra are
differentiated by the colour). All the coordination polyhedra, especially
those of fluorine are actually slightly distorted. Figure drawn using
VESTA (Momma & Izumi, 2011).

Figure 2
The structure of laurelite in the cation-centred description. Pb1 and Pb2
coordinate two Cl and seven F in a rather irregular polyhedron (yellow),
whereas Pb3 coordinates eight F in a more regular 2 + 6 polyhedron
(orange). Pb1 shares faces with Pb1 and Pb3, edges with Pb2; Pb2 shares
faces with Pb2, edges with Pb1 and Pb3; Pb3 shares faces with Pb1 and
Pb3, edges with Pb2. Figure drawn using VESTA.

Figure 3
The structure of delafossite Y2Cu2O5 (Van Tendeloo et al., 2001) in the
cation-centred description. The Cu atoms are located on the edge of a
disphenoid (Cu1) or of a triangle (Cu2) which correspond to the
dumbbell in the prototype delafossite, where the metal has linear
coordination. Figure drawn using VESTA.
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one type of Vatom is present in the structure, there is nothing

to distribute and Q(ij) necessarily matches q(ij), as discussed

in x3. The anion-centred description gives a perfect match too.

Delafossites of the type LaCuO2 and YCuO2 are also

known to easily intercalate extra O atoms, which tend to adopt

an ordered arrangement within the CuOx plane and give rise

to derived structures LnCuO2+x (Ln = La or Y) consisting of a

planar layer of A cations forming additional bonds with

respect to the linear coordination in the prototype structure,

and a layer of edge-sharing BO6 octahedra flattened with

respect to the c axis. The structure of Y2Cu2O5, corresponding

to x = 0.5, was reported by Van Tendeloo et al. (2001) and is

shown in Figs. 3 (cation centred) and 4 (anion centred). In the

cation-centred description, the Cu atoms are located on the

edge of a disphenoid (Cu1) or of a triangle (Cu2) which

corresponds to the dumbbell in the prototype delafossite,

where the metal would have linear coordination. In the anion-

centred description, the O atoms are at the centre of O[Y3Cu]

pseudo-tetrahedra (O2, O3; red in the figure) and of
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Figure 4
The structure of delafossite Y2Cu2O5 in the anion-centred description.
The O atoms are at the centre of O[Y3Cu pseudo-tetrahedra] (O2, O3;
red in the figure) or of O1[Y2Cu3] pseudo-trigonal bipyramids (cyan in
the figure), in corner- and edge-sharing topology in which pairs of corner-
sharing bipyramids are alternatively occupied and empty. Figure drawn
using VESTA.

Table 5
Bond distances d (Å), FIR (Å) and bond weights of Y2CuO5 (Van
Tendeloo et al., 2001) in the cation-centred description, where the
structure is built by homoligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs) w(ij ! rs)

Y 1 3 8 O 2 �2 8 2.2357 1.033 1.241
O 2 �2 8 2.2460 1.038 1.214
O 3 �2 8 2.3051 1.065 1.060
O 2 �2 8 2.3420 1.083 0.965
O 3 �2 8 2.3789 1.100 0.871
O 3 �2 8 2.4471 1.131 0.706
O 1 �2 8 2.5632 1.848 0.458

Cu 1 2 4 O 2 �2 8 1.8679 � 2 0.691 � 2 1.206 � 2
O 1 �2 4 2.0627 0.763 0.622
O 1 �2 4 2.0759 0.768 0.588

Cu 2 2 4 O 3 �2 8 1.8073 � 2 0.668 � 2 1.074 � 2
O 1 �2 4 1.8898 0.699 0.807

Figure 5
The structure of crocoite (Effenberger & Pertlik, 1986) in the cation-
centred description. Chromium has an almost regular tetrahedral
coordination, while lead is coordinated by nine O atoms spread on a
large interval of distances. Figure drawn using VESTA.

Table 7
Bond distances d (Å), FIR (Å) and bond weights of Y2CuO5 in the anion-
centred description, where the structure is built by heteroligand
polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs) w(ij ! rs)

O 1 �2 4 Y 1 3 8 2.5632 � 2 1.378 � 2 1.000 � 2
Cu 2 2 8 1.8898 1.191 1.290
Cu 1 2 8 2.0627 1.300 0.770
Cu 1 2 8 2.0759 1.308 0.734

O 2 2 8 Y 1 3 8 2.2357 1.202 1.087
Y 1 3 8 2.2460 1.208 1.059
Y 1 3 8 2.3420 1.259 0.809
Cu 1 2 8 1.8679 1.177 1.000

O 3 2 8 Y 1 3 8 2.3051 1.240 1.160
Y 1 3 8 2.3789 1.279 0.972
Y 1 3 8 2.4471 1.316 0.803
Cu 1 2 8 1.8073 1.139 1.000

Table 6
MEFIR (Å), average distance d (Å), ECoN and computed charges of
Y2CuO5 in the cation-centred structure.

PC(ij) MEFIR(ij) d(ij) ECoN(ij) Q V(rs) Q �Q(i ! rs)

Y 1 1.076 2.328 6.52 2.91 O 1 �1.64 O1—Y �0.516
Cu 1 0.715 1.934 3.62 2.01 O 2 �2.24 O1—Cu �1.484
Cu 2 0.677 1.830 2.95 2.17 O 3 �1.94 O2—Y �1.406

O2—Cu �0.594
O3—Y �1.521
O3—Cu �0.749

MAPD 3.6 9.6
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O1[Y2Cu3] pseudo-trigonal bipyramids (cyan in the figure), in

corner- and edge sharing topology where pairs of corner-

sharing bipyramids are alternatively occupied and empty. We

may expect a better result of the CHARDI analysis in the

anion-centred description, despite the presence of hetero-

ligand polyhedra.

The analysis based on the homoligand description (cation-

centred) is given in Table 5. The results of the charge distri-

bution analysis (Table 6) reveal quite a large OUB effect,

which is not surprising considering the very unusual coordi-

nation of the Cu atoms, which do not really form coordination

polyhedra. The values of �Q(i ! rs) in the last column of

Table 6 are used to compute the charge distribution of the

anion-centred description (coordination in Table 7) and the

results are shown in Table 8. As expected, the results are

definitely more satisfactory because in this description the

structure is really based on coordination polyhedra.

5.3. Crocoite: a structure with two possible descriptions

Crocoite, PbCrO4, is an uncommon secondary mineral in

lead deposits associated with chromium-bearing rocks. We use

the structural data reported by Effenberger & Pertlik (1986).

The Cr—O bond in chromates is usually described as

consisting of two single bonds and two double bonds; however,

the four Cr—O distances in crocoite (Table 9) are similar,

suggesting the presence of resonance (IUPAC, 1997).

Tables 9 and 10 give the coordination details and the charge

distribution results in the cation-centred description. Chro-

mium has an almost regular tetrahedral coordination, while

lead is coordinated by nine O atoms spread on a large interval

of distances, corresponding to bond weights going from 1.224

to 0.203 (Fig. 5). The agreement with the input charges is

excellent. The last column of Table 10 gives �Q(i ! rs)

[equation (15)], which is used in the next step to compute the

charge distribution when the structure is described as anion-

centred. The corresponding coordination data are given in

Table 11. Differently from the laurelite case, in crocoite the

coordination polyhedra about the anions are far from regular
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Table 8
MEFIR (Å), average distance d (Å), ECoN and computed charges of
Y2CuO5 in the anion-centred structure.

PC(ij) V(r)
MEFIR
(ij ! r) d(ij ! r)

ECoN
(ij ! r) ECoN(ij) Q r s Q

O 1 Y 1.378 2.563 2.00 4.79 �1.96 Y 1 2.91
Cu 1.250 1.985 2.79 Cu 1 1.99

O 2 Y 1.220 2.268 2.95 3.95 �2.04 Cu 2 2.18
Cu 1.177 1.868 1.00

O 3 Y 1.273 2.368 2.94 3.94 �1.97
Cu 1.139 1.807 1.00

MAPD 1.8 3.9

Table 9
Bond distances d (Å), FIR (Å) and bond weights of crocoite (Effenberger
& Pertlik, 1986) in the cation-centred description, where the structure is
built by homoligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs) w(ij ! rs)

Pb 1 2 4 O 3 �2 4 2.5313 1.325 1.224
O 2 �2 4 2.5531 1.337 1.174
O 4 �2 4 2.5715 1.347 1.131
O 1 �2 4 2.5913 1.357 1.085
O 3 �2 4 2.6452 1.385 0.962
O 4 �2 4 2.6772 1.402 0.890
O 1 �2 4 2.6882 1.408 0.865
O 2 �2 4 2.8077 1.470 0.620
O 2 �2 4 3.0810 1.613 0.203

Cr 1 6 4 O 4 �2 4 1.6499 0.410 1.048
O 2 �2 4 1.6647 0.414 0.994
O 1 �2 4 1.6671 0.414 0.986
O 3 �2 4 1.6717 0.415 0.969

Table 10
MEFIR (Å), average distance d (Å), ECoN and computed charges of
crocoite in the cation-centred description.

PC(ij) MEFIR(ij) d(ij) ECoN(ij) Q V(rs) Q �Q(i ! rs)

Pb 1 1.376 2.628 8.15 2.00 O 1 �1.96 Pb: �0.489
Cr 1 0.413 1.663 4.00 6.00 Cr: �1.511

O 2 �1.98 Pb: �0.493
Cr: �1.507

O 3 �1.99 Pb: �0.539
Cr: �1.461

O 4 �2.07 Pb: �0.479
Cr: �1.521

MAPD 0 0.7

Table 11
Bond distances d (Å), FIR (Å) and bond weights of crocoite in the anion-
centred description, where the structure is built by heteroligand
polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs)
FIR
(ij ! rs) w(ij ! rs)

O 1 �2 4 Pb 1 2 4 2.5913 1.234 1.098
Pb 1 2 4 2.6882 1.281 0.878
Cr 1 6 4 1.6671 1.253 1.000

O 2 �2 4 Pb 1 2 4 2.5531 1.216 1.319
Pb 1 2 4 2.8077 1.338 0.756
Pb 1 2 4 3.0810 1.468 0.291
Cr 1 6 4 1.6647 1.251 1.000

O 3 �2 4 Pb 1 2 4 2.5313 1.206 1.124
Pb 1 2 4 2.6452 1.260 0.860
Cr 1 6 4 1.6717 1.256 1.000

O 4 �2 4 Pb 1 2 4 2.5715 1.225 1.106
Pb 1 2 4 2.6772 1.275 0.865
Cr 1 6 4 1.6499 1.240 1.000

Table 12
MEFIR (Å), average distance d (Å), ECoN and computed charges of
crocoite in the anion-centred description.

PC(ij) V(r)
MEFIR
(ij ! r) d(ij ! r)

ECoN
(ij ! r) ECoN(ij) Q r s Q

O 1 Pb 1.255 2.634 1.98 2.98 �2.00 Pb 1 2.00
Cr 1.253 1.667 1.00 Cr 1 6.00

O 2 Pb 1.283 2.695 2.37 3.37 �2.00
Cr 1.251 1.665 1.00

O 3 Pb 1.231 2.584 1.99 2.99 �2.00
Cr 1.256 1.672 1.00

O 4 Pb 1.247 2.618 1.97 2.97 �2.00
Cr 1.240 1.650 1.00

MAPD 0 0
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and the anions are off-centred, close to the cation with higher

valence. All the O atoms are coordinated by one chromium

and two Pb atoms, forming an irregular triangle with the

oxygen closer to the chromium than to the lead; O2 has a third

Pb atom with which it forms a much weaker bond defining a

highly deformed tetrahedron with the oxygen close to one face

(Fig. 6). Table 12 gives the charge distribution in this

description: the agreement with the input charge is absolutely

perfect, showing that the description of the structure as anion-

centred, despite irregular coordination due to its heteroligand

nature, makes perfect sense, most likely because of the large

dimension of the cations.

5.4. Potassium selenotrithionate: a structure containing
heteroligand polyhedra in both descriptions

The structure of K2SeS2O6 was reported by Foust & Janickis

(1980) and contains two types of cations (K+ and S6+, two

crystallographic types each) and two types of anions (Se2� and

O2�, one type of Se and six types of O). The crystal structure is

built on heteroligand polyhedra in both the cation-centred and

the anion-centred description, namely S(O3Se) for both S

atoms, K1O6 and K2(O9Se), in the cation-centred description,

and Se(S2K), O1(SK4), O2(SK2), O3(SK2), O4(SK3), O5(SK3)

and O6(SK), in the anion centred description. The K2—Se

contact is long (3.7556 Å) yet it cannot be neglected a priori; in

fact, FIR(K2-Se) is 1.847 Å, well within the range of FIR(K2-

O) for K—O coordination, which spans the interval 1.584–

2.039 Å, although the longer bond distances obviously have a

smaller weight (Table 13). The anion-centred description is

given in Table 14. The MEFIR, average distances and ECoN

values are presented in Table 15 for both cation-centred and

anion-centred descriptions.
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Table 13
Bond distances d (Å), FIR (Å) and bond weights of K2SeS2O6 (Foust &
Janickis, 1980) in the cation-centred description.

The structure is built by heteroligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs)
FIR
(ij ! rs) w(ij ! rs)

S 1 6 4 Se 1 �2 4 2.2562 0.138 1.000
O 3 �2 4 1.4387 0.130 1.032
O 2 �2 4 1.4499 0.131 0.985
O 1 �2 4 1.4511 0.131 0.981

S 2 6 4 Se 1 �2 4 2.2569 0.138 1.000
O 6 �2 4 1.4359 0.130 1.029
O 4 �2 4 1.4454 0.130 0.989
O 5 �2 4 1.4475 0.131 0.981

K 1 1 4 O 6 �2 4 2.6551 1.581 1.193
O 3 �2 4 2.6787 1.595 1.141
O 5 �2 4 2.7524 1.639 0.979
O 2 �2 4 2.7840 1.657 0.910
O 4 �2 4 2.7950 1.664 0.887
O 1 �2 4 2.8595 1.702 0.752

K 2 1 4 Se 1 �2 4 3.7556 1.847 1.000
O 3 �2 4 2.6606 1.584 1.370
O 5 �2 4 2.7706 1.649 1.134
O 5 �2 4 2.7923 1.662 1.089
O 1 �2 4 2.8237 1.681 1.021
O 4 �2 4 2.8787 1.714 0.905
O 2 �2 4 2.9548 1.759 0.751
O 4 �2 4 2.9588 1.761 0.743
O 1 �2 4 3.3554 1.998 0.172
O 1 �2 4 3.4249 2.039 0.120

Table 14
Bond distances d (Å), FIR (Å) and bond weights of K2SeS2O6 in the
anion-centred description.

The structure is built by heteroligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs)
FIR
(ij ! rs) w(ij ! rs)

Se 1 �2 4 S 1 6 4 2.2562 2.118 1.001
S 2 6 4 2.2569 2.119 0.999
K 2 1 4 3.7556 1.909 1.000

O 1 �2 4 S 1 6 4 1.4511 1.320 1.000
K 2 1 4 2.8237 1.143 1.222
K 1 1 4 2.8595 1.157 1.148
K 2 1 4 3.3554 1.358 0.286
K 2 1 4 3.4249 1.386 0.213

O 2 �2 4 S 1 6 4 1.4499 1.319 1.000
K 1 1 4 2.7840 1.127 1.146
K 2 1 4 2.9548 1.196 0.791

O 3 �2 4 S 1 6 4 1.4387 1.309 1.000
K 2 1 4 2.6606 1.077 1.020
K 1 1 4 2.6787 1.084 0.979

O 4 �2 4 S 2 6 4 1.4454 1.315 1.000
K 1 1 4 2.7950 1.131 1.153
K 2 1 4 2.8787 1.165 0.976
K 2 1 4 2.9588 1.197 0.813

O 5 �2 4 S 2 6 4 1.4475 1.317 1.000
K 1 1 4 2.7524 1.114 1.041
K 2 1 4 2.7706 1.121 1.001
K 2 1 4 2.7923 1.130 0.954

O 6 �2 4 S 2 6 4 1.4359 1.306 1.000
K 1 1 4 2.6551 1.074 1.000

Figure 6
The structure of crocoite in the anion-centred description. All the O
atoms are coordinated by one Cr and two Pb atoms, forming an irregular
triangle with the oxygen closer to the chromium than to the lead; O2 has a
third Pb atom with which it forms a much weaker bond defining a highly
deformed tetrahedron with the oxygen close to one face. Figure drawn
using VESTA.
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In the following we give a detailed description of the

calculation procedure to illustrate step-by-step the new

developments of the CHARDI method, in particular the

iterative procedure to distribute the formal charge to each

subpolyhedron.

Because the structure is based on heteroligand polyhedra in

both the cation-centred and the anion-centred description, the

first step consists of separating Q as a function of ECoN(ij !
r)/ECoN(ij), equation (160). This is first performed in the

cation-centred description, but it could well be done on the

anion-centred one. The result is then used to calculate �Q(i

! rs), equation (15), and �Q(ij ! r), equation (16), in an

iterative cycle. Table 16 illustrates the procedure, which takes

three steps to reach convergence on a threshold at 0.01 of �Q.

In the first step, �Q(ij ! r) is obtained by separating q(ij) as a

function of ECoN(ij ! r)/ECoN(ij), equation (160). For both S
atoms, ECoN(S ! Se) = 1.00 and ECoN(S ! O) = 3.00 so

that 1
4 of the formal charge (+6) is assumed to be distributed to

Se and 3
4 to O. K1 is not bound to Se and only distributes its

formal charge to O atoms. Finally, ECoN(K ! Se) = 1.00 and

ECoN(S! O) = 7.31 so that 13.7% of the formal charge (+1)

is assumed to be distributed to Se and 86.3% to O. This leads

to a satisfactory charge distribution on the PC atoms (5.97 and

5.89 for S1 and S2, 1.10 and 1.03 for K1 and K2, respectively:

MAPD 3.9%) but a largely unbalanced distribution on the V

atoms, with Se severely overbonded (�3.12) and O atoms

underbonded (�1.72 to �1.91) with MAPD = 16% (Table 17,

‘step 1, cation-centred’). At this first step, the longer bonds are

clearly overestimated but this is not an obstacle in the iterative

procedure.

In the next step, the role of the PC and V atoms is

exchanged. �q(ij ! rs) obtained from the cation-centred

analysis are summed up around each chemical species of

cation resulting in �Q(i ! rs) [equation (15)], then the roles

of cations and anions are exchanged and �Q(ij ! r) which is

to be used in the next step is computed through equation (16).

This numerically corresponds to a simple change of sign, with

the fundamental difference that the values are now collected

about the anions. This corresponds to the exchange of indices r

! i, s ! j, i ! r, described in the previous section. For

example, �Q(1 ! 25), which corresponds to �Q(K ! O5),

becomes �Q(O5 ! K), which in the anion-centred descrip-

tion is �Q(25 ! 1). These values are used to compute the

charge distribution whose results are in Table 17 (‘step 1,

anion-centred’ in both tables). The procedure is then repeated

by again swapping the roles of cations and anions until close

values of �Q(ij ! r) are obtained between two cycles

(convergence criterion used in this calculation: difference

lower than 0.01 charge units: � columns in Table 16), which

are obtained in three steps. The results in Table 17 are satis-

factory in both descriptions and the differences between the

second and the third step are minimal, as would be expected

by the small differences (�) in Table 16 between these two

steps.

5.5. Lanthanum orthosilicate selenide

We have previously used the structure of La2SeSiO4

(Brennan & Ibers, 1991) as an example of a compound

containing heteroligand polyhedra treated with the scale

factor algorithm (Nespolo et al., 2001). In Tables 18 and 19 we

present the results obtained with the new algorithm and

reproduce the results published at that time, with the only

difference being that the data dispersion is now presented in

terms of MAPD. The results are practically unchanged;

however, the new algorithm does not depend on any a priori

assumption, as in the case of the previous one when an overall

balance on the chemical species of the anions was assumed

and used to compute the scale factors. The results obtained

with the new algorithm are therefore unbiased.

Furthermore, we present the analysis of the anion-centred

description (Tables 20 and 21), which were not accessible in

the previous version. The results are also satisfactory in this

description.

5.6. Disodium magnesium digadolinium catena-tetrasilicate
difluoride

The structure of Na2MgGd2(Si4O12)F2 was reported by

Maisonneuve & Leblanc (1998). We use this structure as a

meaningful test because it contains various kinds of hetero-
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Table 15
MEFIR (Å), average distance d (Å) and ECoN of K2SeS2O6.

Cation-centred description Anion-centred description

PC(ij) V(r) MEFIR(ij ! r) d(ij ! r) ECoN(ij ! r) ECoN(ij) PC(ij) V(r) MEFIR(ij ! r) d(ij ! r) ECoN(ij ! r) ECoN(ij)

S 1 Se 0.138 2.256 1.00 4.00 Se 1 S 2.118 2.257 2.00 3.00
O 0.131 1.446 3.00 K 1.909 3.756 1.00

S 2 Se 0.138 2.257 1.00 4.00 O 1 S 1.320 1.451 1.00 3.87
O 0.130 1.443 3.00 K 1.185 2.931 2.87

K 1 Se – – – 5.86 O 2 S 1.319 1.450 1.00 2.94
O 1.634 2.743 5.86 K 1.157 2.853 1.94

K 2 Se 1.847 3.756 1.00 8.30 O 3 S 1.309 1.439 1.00 3.00
O 1.687 2.833 7.30 K 1.080 2.669 2.00

O 4 S 1.315 1.445 1.00 3.94
K 1.160 2.867 2.94

O 5 S 1.317 1.448 1.00 4.00
K 1.121 2.771 3.00

O 6 S 1.306 1.436 1.00 2.00
K 1.076 2.655 1.00
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ligand polyhedra, two in the cation-centred description (O and

F), four in the anion-centred description (Na, Mg, Gd and Si),

the latter including atoms of widely different size. The two Si

atoms form somewhat distorted tetrahedra, Gd is coordinated

by two Fatoms and five O atoms (a sixth bond having a weight

of 0.083 can be considered practically absent), Mg forms an

hetero-octahedron with 2F and 6O, Na is coordinated by 1F

and 6O (a seventh bond having a weight of 0.027 can be

considered practically absent; Table 22). The results of the

CHARDI analysis (Table 23) are quite satisfactory, with only a

small OUB effect (O1 versus O3). In the anion-centred

description (Tables 24 and 25) the result are even better.
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Table 16
Iterative calculation of �Q(ij ! r) of K2SeS2O6.

Step 1

Cation-centred Anion-centred

PC(ij) V (r) �Q(ij ! r) � PC(i) V (rs) �Q(i ! rs) PC(ij) V (r) �Q(ij ! r) �

S1 Se 1.501 – S Se 1.923 Se S �1.923 –
O 4.499 – O1 1.674 K �0.077 –

S2 Se 1.500 – O2 1.715 O1 S �1.674 –
O 4.500 – O3 1.623 K �0.326 –

K1 Se 0 – O4 1.619 O2 S �1.715 –
O 1.000 – O5 1.544 K �0.285 –

K2 Se 0.120 – O6 1.767 O3 S �1.623 –
O 0.880 – K Se 0.077 K �0.377 –

O1 0.326 O4 S �1.619 –
O2 0.285 K �0.381 –
O3 0.377 O5 S �1.544 –
O4 0.381 K �0.456 –
O5 0.456 O6 S �1.767 –
O6 0.233 K �0.233 –

Step 2

Cation-centred Anion-centred

PC(i) V(rs) �Q(i ! rs) PC(ij) V(r) �Q(ij ! r) � PC(i) V(rs) �Q(i ! rs) PC(ij) V(r) �Q(ij ! r) �

Se S1 �0.966 S1 Se 0.966 0.534 S Se 1.931 Se S �1.931 0.008
S2 �0.978 O 5.034 0.534 O1 1.636 K �0.069 0.008
K1 0 S2 Se 0.978 0.522 O2 1.737 O1 S �1.696 0.021
K2 �0.069 O 5.022 0.522 O3 1.649 K �0.304 0.021

O S1 �5.034 K1 Se 0 0.000 O4 1.642 O2 S �1.737 0.022
S2 �5.022 O 1.000 0.000 O5 1.570 K �0.263 0.022
K1 �1.000 K2 Se 0.069 0.051 O6 1.789 O3 S �1.649 0.026
K2 �0.931 O 0.931 0.051 K Se 0.069 K �0.351 0.026

O1 0.304 O4 S �1.642 0.023
O2 0.263 K �0.358 0.023
O3 0.351 O5 S �1.570 0.026
O4 0.358 K �0.430 0.026
O5 0.430 O6 S �1.789 0.022
O6 -0.211 K �0.211 0.022

Step 3

Cation-centred Anion-centred

PC(i) V(rs) �Q(i ! rs) PC(ij) V(r) �Q(ij ! r) � PC(i) V(rs) �Q(i ! rs) PC(ij) V(r) �Q(ij ! r) �

Se S1 �0.959 S1 Se 0.959 0.008 S Se 1.933 Se S �1.933 0.002
S2 �0.970 O 5.041 0.008 O1 1.695 K �0.067 0.002
K1 0 S2 Se 0.970 0.008 O2 1.737 O1 S �1.695 0.000
K2 �0.066 O 5.030 0.008 O3 1.649 K �0.305 0.000

O S1 �5.041 K1 Se 0 0.000 O4 1.642 O2 S �1.737 0.000
S2 �5.030 O 1.000 0.000 O5 1.570 K �0.263 0.000
K1 �1.000 K2 Se 0.066 0.003 O6 1.789 O3 S �1.649 0.000
K2 �0.934 O 0.934 0.003 K Se 0.067 K �0.351 0.000

O1 0.305 O4 S �1.642 0.000
O2 0.263 K �0.358 0.000
O3 0.351 O5 S �1.570 0.000
O4 0.358 K �0.430 0.000
O5 0.430 O6 S �1.789 0.000
O6 0.211 K �0.211 0.000
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5.7. KMoO2PO4: a non-Madelung-type structure on which
CHARDI cannot work

Molybdates in which bonds of different order coexist in the

same polyhedron can be represented by the title compound

(Peascoe & Clearfield, 1991). Here the coordination of

molybdenum is of type 2 + 4 with a large gap between the two

shortest bond distances and the four longer ones (Tables 26

and 28). With respect to the crocoite example analysed above,

no resonance appears to occur, as shown by the largely

different bond distances. Adoption of the iterative calculation

of the bond weights (Nespolo et al., 2001) is normally capable

of correctly treating distorted polyhedra. In this case, however,

the gap is too wide and the bond weights attributed to the

longer distances are too small to obtain the input charge q(ij)

as a result of the distribution procedure. Indeed, the results on

both descriptions, cation-centred (Table 27) and anion-centred

(Table 29), are unsatisfactory. This type of structure is not

correctly described in a Madelung-type framework and

remains outside the possibilities of a satisfactory CHARDI

analysis.

6. Discussion

The concept of bond strength has its roots in the XIX century

theory of valence and is based on the idea that the total bond

valence received by each atom is equal to its atomic valence.

The CHARDI method fundamentally differs from other

methods that investigate the connectivity of a crystal structure

in term of the network of bond strengths in being essentially a

geometric analysis of the coordination polyhedra exploiting

the observed distances only, rather than comparing them with

some ‘standard values’ which actually undergo frequent

redefinition and re-refinement. The bond weight is a purely

geometric concept which quantitatively tells how strongly the

presence of a V atom at the corner of a polyhedron is felt by

the PC atom at the centre of it. The bond weight is not directly

related to the electron density of the bond and the charge is

distributed, and not computed, among each bond and the

equivalent of the valence sum rule (or bond valence sum,

BVS) strictly applies to Q(ij), not to Q(rs), the two quantities

bringing different information: a measure of the OUB effects
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Table 17
Computed charges of K2SeS2O6 as a function of �Q(ij ! r) obtained by the iterative procedure in Table 16.

Step 1 Step 2 Step 3

Cation-centred Anion-centred Cation-centred Anion-centred Cation-centred Anion-centred

PC(ij) Q V(rs) Q PC(ij) Q V(rs) Q PC(ij) Q V(rs) Q PC(ij) Q V(rs) Q PC(ij) Q r s Q PC(ij) QV(rs) V(rs) Q

S 1 5.97 Se 1 �3.12 Se 1 �2.01 S 1 5.97 S 1 6.04 Se 1 �2.01 Se 1 �2.00 S 1 6.05 S 1 6.04 Se 1 �2.01 Se 1 �2.00 S 1 6.04
S 2 5.89 O 1 �1.76 O 1 �1.98 S 2 5.89 S 2 5.97 O 1 �1.94 O 1 �1.99 S 2 5.97 S 2 5.97 O 1 �1.95 O 1 �1.99 S 2 5.97
K 1 1.10 O 2 �1.72 O 2 �1.99 K 1 1.02 K 1 1.00 O 2 �1.91 O 2 �1.99 K 1 0.95 K 1 1.00 O 2 �1.91 O 2 �1.99 K 1 0.95
K 2 1.03 O 3 �1.91 O 3 �1.98 K 2 1.11 K 2 0.99 O 3 �2.10 O 3 �1.99 K 2 1.04 K 2 0.99 O 3 �2.10 O 3 �1.99 K 2 1.03

O 4 �1.83 O 4 �2.00 O 4 �2.02 O 4 �2.01 O 4 �2.02 O 4 �2.01
O 5 �1.91 O 5 �2.00 O 5 �2.09 O 5 �2.01 O 5 �2.10 O 5 �2.01
O 6 �1.75 O 6 �2.03 O 6 �1.93 O 6 �2.02 O 6 �1.93 O 6 �2.02

MAPD 3.9 16.0 0.6 3.9 0.7 3.2 0.5 2.5 0.7 3.2 0.5 2.4

Table 18
Bond distances d (Å), FIR (Å) and bond weights of La2SeSiO4 (Brennan
& Ibers, 1991) in the cation-centred description.

The structure is built by heteroligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs)

La 1 3.00 4 O 1 �2.00 8 2.5007 � 2 1.229 � 2 1.081 � 2
O 1 �2.00 8 2.5169 � 2 1.237 � 2 1.043 � 2
O 2 �2.00 8 2.6014 � 2 1.279 � 2 0.845 � 2
Se 1 �2.00 4 3.0476 1.185 1.267
Se 1 �2.00 4 3.2324 1.256 0.917
Se 1 �2.00 4 3.5407 1.376 0.416

La 2 3.00 4 O 2 �2.00 8 2.5096 � 2 1.234 � 2 1.052 � 2
O 1 �2.00 8 2.5315 � 2 1.244 � 2 1.000 � 2
O 2 �2.00 8 2.5561 � 2 1.257 � 2 0.942 � 2
Se 1 �2.00 4 3.2329 � 2 1.257 � 2 1.210 � 2
Se 1 �2.00 4 3.7827 � 2 1.470 � 2 0.341 � 2

Si 1 4.00 4 O 2 �2.00 8 1.6302 � 2 0.405 � 2 1.017 � 2
O 1 �2.00 8 1.6395 � 2 0.407 � 2 0.983 � 2

Table 19
MEFIR (Å), ECoN and computed charges of La2SeSiO4 in the cation-centred description.

CHARDI (2015) CHARDI (2001) CHARDI (1999)

PC(ij) V(r) MEFIR(ij ! r) d(ij ! r) ECoN(ij ! r) ECoN(ij) Q V(rs) Q PC(ij) Q V(rs) Q PC(ij) Q V(rs) Q

La 1 O 1.246 2.535 5.94 8.54 2.99 O 1 �2.02 La 1 2.99 O 1 �2.00 La 1 3.00 O 1 �1.89
Se 1.239 3.188 2.60

La 2 O 1.244 2.532 5.99 9.09 3.01 O 2 �1.98 La 2 3.01 O 2 �2.03 La 2 3.05 O 2 �2.07
Se 1.301 3.349 3.10

Si 1 O 1.635 1.635 4.00 4.00 4.00 Se 1 �2.00 Si 1 4.00 Se 1 �1.97 Si 1 3.95 Se 1 �1.985
Se

MAPD 0.2 0.9 0.2 0.9 1.0 3.8
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for Q(rs), the evaluation of the applicability – including

structure reliability – for Q(ij).

One aspect that the CHARDI method originally inherited

from the old valence theory assumed the cations to be the

centre of the coordination polyhedra. This limitation has been

recently removed (Eon & Nespolo, 2015) and the new route to

treat heteroligand polyhedra presented here allows CHARDI

to be free from the few assumptions it still had in the previous

versions. The need for a scaling factor in the treatment of

heteroligand polyhedra, which were computed under the

assumption of an overall charge balance on the same chemical

species of anions, has been removed. Furthermore, the

empirical estimation of the minimal PC—V distance corre-

sponding to a bonding contact has been effectively replaced by

the use of MEFIR in the first step of the analysis of the

coordination polyhedra.

Despite the Madelung-type approach, CHARDI has

proved to be able to treat a wide range of structures with a

large chemical heterogeneity, although some types of

compounds still remain outside its possibilities, as shown by

the example of KMoO2PO4 discussed above. Apart from these

rare exceptions, CHARDI can bring important information

not always easily obtained from experimental data:

(i) a structure validation based only on internal criteria,

without the reference to empirical parameters (see e.g. Tmar

Trabelsi et al., 2015);

(ii) the presence of structural anomalies, as in the case of

pyroxenes analysed by Nespolo et al. (1999);

(iii) the site-occupancy factor of incompletely occupied sites

(see e.g. Guesmi et al., 2006);

(iv) the most likely oxidation state of atoms with multiple

valences (see e.g. Pignatelli et al., 2011);

(v) the most likely oxidation state of an atomic site in

compounds presenting isomorphic substitutions, which gives a

clear indication of the fractional occupancy by each type of

atom (see e.g. Toumi & Mhiri, 2008): this information may be

difficult to obtain from conventional X-ray diffraction

experiments in the case of heterovalent substitutions involving
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Table 20
Bond distances d (Å), FIR (Å) and bond weights of La2SeSiO4 in the
anion-centred description.

The structure is built by heteroligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs)

O 1 �2 8 La 1 3 4 2.5007 1.271 1.037
La 1 3 4 2.5169 1.280 0.998
La 2 3 4 2.5315 1.287 0.963
Si 1 4 4 1.6395 1.232 1.000

O 2 �2 8 La 2 3 4 2.5096 1.276 1.101
La 2 3 4 2.5561 1.300 0.991
La 1 3 4 2.6014 1.323 0.886
Si 1 4 4 1.6302 1.225 1.000

Se 1 �2 4 La 1 3 4 3.0476 1.863 1.388
La 1 3 4 3.2324 1.976 1.044
La 2 3 4 3.2329 � 2 1.976 � 2 1.043 � 2
La 1 3 4 3.5407 2.164 0.521
La 2 3 4 3.7827 � 2 2.312 � 2 0.233 � 2

Table 21
MEFIR (Å), ECoN and computed charges of La2SeSiO4 in the anion-
centred description.

PC(ij) V(r) MEFIR
(ij ! r)

d(ij ! r) ECoN
(ij ! r)

ECoN(ij) Q V(rs) Q

O 1 La 1.279 2.516 3.00 4.00 �1.99 La 1 3.05
Si 1.232 1.639 1.00

O 2 La 1.298 2.552 2.98 3.98 �2.01 La 2 2.95
Si 1.225 1.630 1.00

Se 1 La 1.990 3.256 5.50 5.50 �2.00 Si 1 4.00
Si – – – –

MAPD 0.3 1.0

Table 22
Bond distances d (Å), FIR (Å) and bond weights of Na2MgGd2(Si4O12)F2
(Maisonneuve & Leblanc, 1998) in the cation-centred description.

The structure is built by heteroligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs)

Gd 1 3 4 F 1 �1 4 2.4712 1.197 1.003
F 1 �1 4 2.4735 1.198 0.997
O 5 �2 4 2.2750 1.073 1.136
O 6 �2 4 2.2878 1.079 1.103
O 2 �2 4 2.3167 1.093 1.027
O 4 �2 4 2.3490 1.108 0.944
O 6 �2 4 2.3921 1.128 0.836
O 3 �2 4 2.8666 1.352 0.083

Si 1 4 4 O 2 �2 4 1.5943 0.396 1.115
O 4 �2 4 1.6021 0.398 1.086
O 1 �2 4 1.6444 0.409 0.930
O 3 �2 4 1.6780 0.417 0.809

Si 2 4 4 O 5 �2 4 1.6107 0.400 1.079
O 6 �2 4 1.6137 0.401 1.068
O 1 �2 4 1.6494 0.410 0.937
O 3 �2 4 1.6622 0.413 0.890

Mg 1 2 2 F 1 �1 4 1.9704 0.843 1.000
F 1 �1 4 1.9704 0.843 1.000
O 4 �2 4 2.0868 � 2 0.867 � 2 1.003 � 2
O 5 �2 4 2.0889 � 2 0.868 � 2 0.997 � 2

Na 1 1 4 F 1 �1 4 2.3165 1.322 1.000
O 2 �2 4 2.3711 1.324 1.397
O 1 �2 4 2.5381 1.417 0.998
O 4 �2 4 2.5509 � 2 1.424 � 2 0.968 � 2
O 3 �2 4 2.7302 1.525 0.576
O 1 �2 4 2.9554 1.650 0.224
O 5 �2 4 3.2745 1.828 0.027

Table 23
MEFIR (Å), ECoN and computed charges of Na2MgGd2(Si4O12)F2 in the
cation-centred description.

PC(ij) V(r)
MEFIR
(ij ! r) d(ij ! r)

ECoN
(ij ! r) ECoN(ij) Q V(rs) Q

Gd 1 F 1.197 2.472 2.00 7.13 3.00 F 1 �1.01
1 O 1.097 2.327 5.13 O1 1 �2.09

Si 1 F – – – 3.94 3.98 O2 2 �2.01
O 0.404 1.625 3.94 O3 3 �1.85

Si 2 F – – – 3.97 4.05 O4 4 �2.08
O 0.405 1.632 3.97 O5 5 �1.99

Mg 1 F 0.843 1.970 2.00 6.00 1.98 O6 6 �1.97
1 O 0.867 2.088 4.00

Na 1 F 1.322 2.317 1.00 6.15 0.99
1 O 1.416 2.537 5.15

MAPD 0.8 2.7
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atoms of close atomic number or atoms with different valence

states;

(vi) the most likely positions of missing light atoms (like

hydrogen), who are hidden by the presence of relatively heavy

atoms.

The extension and generalization presented in this work

should allow an even wider application of the CHARDI

approach and a complete exploitation of its full potential.
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Table 24
Bond distances d (Å), FIR (Å) and bond weights of Na2MgGd2(Si4O12)F2
in the anion-centred description.

The structure is built by heteroligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs)

F 1 �1 4 Gd 1 3 4 2.4712 1.274 1.003
Gd 1 3 4 2.4735 1.276 0.997
Mg 1 2 2 1.9704 1.127 1.000
Na 1 1 4 2.3165 0.994 1.000

O 1 �2 4 Si 1 4 4 1.6444 1.236 1.009
Si 2 4 4 1.6494 1.240 0.991
Na 1 1 4 2.5381 1.121 1.213
Na 1 1 4 2.9554 1.305 0.364

O 2 �2 4 Gd 1 3 4 2.3167 1.224 1.000
Si 1 4 4 1.5943 1.198 1.000
Na 1 1 4 2.3711 1.047 1.17
Na 1 1 4 2.5509 1.126 0.735

O 3 �2 4 Gd 1 3 4 2.8666 1.515 1.000
Si 2 4 4 1.6622 1.249 1.028
Si 1 4 4 1.6780 1.261 0.971
Na 1 1 4 2.7302 1.206 1.000

O 4 �2 4 Gd 1 3 4 2.3490 1.241 1.000
Si 1 4 4 1.6021 1.204 1.000
Mg 1 2 2 2.0868 1.220 1.000
Na 1 1 4 2.5509 1.126 1.000

O 5 �2 4 Gd 1 3 4 2.2750 1.202 1.000
Si 2 4 4 1.6107 1.211 1.000
Mg 1 2 2 2.0889 1.221 1.000
Na 1 1 4 3.2745 1.446 1.000

O 6 �2 4 Gd 1 3 4 2.2878 1.209 1.116
Gd 1 3 4 2.3921 1.264 0.849
Si 2 4 4 1.6137 1.213 1.000
Na 1 1 4 3.5549 1.570 1.000

Table 25
MEFIR (Å), ECoN and computed charges of Na2MgGd2(Si4O12)F2 in the
anion-centred description.

PC(ij) V(r)
MEFIR
(ij ! r) d(ij ! r)

ECoN
(ij ! r) ECoN(ij) Q V(rs) Q

F 1 Gd 1.275 2.472 2 4.00 �1.01 Gd 1 3.00
F 1 Si – – – Si 1 4.00
F 1 Mg 1.127 1.97 1 Si 2 4.03
F 1 Na 0.994 2.317 1 Mg 1 1.97
O 1 Si 1.238 1.647 2 3.58 �2.00 Na 1 0.99
O 1 Mg – – –
O 1 Na 1.161 2.631 1.58
O 2 Gd 1.224 2.317 1
O 2 Si 1.198 1.594 1 3.90 �2.01
O 2 Mg – – –
O 2 Na 1.077 2.439 1.9
O 3 Gd 1.521 2.867 1
O 3 Si 1.255 1.67 2 4.00 �1.99
O 3 Na 1.206 2.73 1
O 4 Gd 1.241 2.349 1
O 4 Si 1.204 1.602 1
O 4 Mg 1.220 2.087 1 4.00 �2.01
O 4 Na 1.126 2.551 1
O 5 Gd 1.202 2.275 1
O 5 Si 1.211 1.611 1
O 5 Mg 1.221 2.089 1 4.00 �2.00
O 5 Na 1.446 3.275 1
O 6 Gd 1.232 2.332 1.96
O 6 Si 1.213 1.614 1
O 6 Mg – – – 3.96 –1.99
O 6 Na 1.620 3.555 1
F 1 Gd 1.275 2.472 2
F 1 Si – – –
MAPD 0.3 0.6

Table 26
Bond distances d (Å), FIR (Å) and bond weights of KMoO2PO4 in the
cation-centred description, where the structure is built by homoligand
polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs) w(ij ! rs)

Mo 1 6 16 O 3 �2 32 1.6919 � 2 0.529 � 2 1.278 � 2
O 2 �2 32 1.9788 � 2 0.618 � 2 0.394 � 2
O 1 �2 32 2.1907 � 2 0.685 � 2 0.078 � 2

K 1 1 16 O 3 �2 32 2.8062 � 2 1.671 � 2 1.294 � 2
O 2 �2 32 2.8508 � 2 1.697 � 2 1.202 � 2
O 1 �2 32 2.9521 � 2 1.757 � 2 0.994 � 2
O 3 �2 32 3.2259 � 2 1.920 � 2 0.490 � 2
O 1 �2 32 3.2984 � 2 1.964 � 2 0.384 � 2

P 1 5 16 O 1 �2 32 1.5112 � 2 0.308 � 2 1.091 � 2
O 2 �2 32 1.5632 � 2 0.319 � 2 0.889 � 2

Table 27
MEFIR (Å), average distance d (Å), ECoN and computed charges of
KMoO2PO4 in the cation-centred description.

PC(ij) MEFIR(ij) d(ij) ECoN(ij) Q V (rs) Q �Q(i ! rs)

Mo 1 0.553 1.773 3.50 5.37 O 1 �1.67 O1—Mo �0.160
K 1 1.754 2.949 8.72 1.00 O 2 �1.94 O1—K �0.189
P 1 0.313 1.534 3.96 5.62 O 3 �2.40 O1—P �1.651

O2—Mo �0.698
O2—K �0.142
O2—P �1.160
O3—Mo �1.829
O3—K �0.171
O3—P –

MAPD 7.8 13.2

Table 28
Bond distances d (Å), FIR (Å) and bond weights of KMoO2PO4 (Peascoe
& Clearfield, 1991) in the anion-centred description, where the structure
is built by heteroligand polyhedra.

PC(ij) q(ij) h(ij) V(rs) q(rs) h(rs) d(ij ! rs) FIR(ij ! rs) w(ij ! rs)

O 1 �2 32 Mo 1 6 16 2.1907 1.506 1.000
K 1 1 16 2.9521 1.195 1.213
K 1 1 16 3.2984 1.335 0.566
P 1 5 16 1.5112 1.203 1.000

O 2 �2 32 Mo 1 6 16 1.9788 1.360 1.000
K 1 1 16 2.8508 1.154 1.000
P 1 5 16 1.5632 1.244 1.000

O 3 �2 32 Mo 1 6 16 1.6919 1.163 1.000
K 1 1 16 2.8062 1.136 1.220
K 1 1 16 3.2259 1.305 0.428
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Table 29
MEFIR (Å), average distance d (Å), ECoN and computed charges of
KMoO2PO4 in the anion-centred description.

PC(ij) V(r)
MEFIR
(ij ! r) d(ij ! r)

ECoN
(ij ! r) ECoN(ij) Q V (rs) Q

O 1 Mo 1.506 2.191 1.00 3.78 �1.84 Mo 1 5.37
K 1.237 3.060 1.78 �1.95 K 1 1.00
P 1.203 1.511 1.00 �2.21 P 1 5.62

O 2 Mo 1.360 1.979 1.00 3.00
K 1.161 2.851 1.00
P 1.244 1.563 1.00

O 3 Mo 1.163 1.692 1.00 2.65
K 1.179 2.912 1.65
P – – –

MAPD 7.1 7.8
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