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de Lorraine, Faculté des Sciences et Technolo-

gies, Institut Jean Barriol, FR 2843, CRM2 UMR

– CNRS 7036, BP 70239, Boulevard des

Aiguillettes, F54506 Vandoeuvre-lès-Nancy

CEDEX, France

Correspondence e-mail: jgeon@iq.ufrj.br

# 2015 International Union of Crystallography

The charge distribution (CHARDI) method is a self-

consistent generalization of Pauling’s concept of bond

strength which does not make use of empirical parameters

but exploits the experimental geometry of the coordination

polyhedra building a crystal structure. In the two previous

articles of this series [Nespolo et al. (1999). Acta Cryst. B55,

902–916; Nespolo et al. (2001). Acta Cryst. B57, 652–664], we

have presented the features and advantages of this approach

and its extension to distorted and heterovalent polyhedra and

to hydrogen bonds. In this third article we generalize

CHARDI to structures based on anion-centred polyhedra,

which have drawn attention in recent years, and we show that

computations based on both descriptions can be useful to

obtain a deeper insight into the structural details, in particular

for mixed-valence compounds where CHARDI is able to give

precise indications on the statistical distribution of atoms with

different oxidation number. A graph-theoretical description

of the structures rationalizes and gives further support to the

conclusions obtained via the CHARDI approach.
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1. Introduction

Since Pauling’s (1929) pioneering work introducing the

concept of bond strength, a significant number of studies have

been devoted to the effort of developing simple yet powerful

tools to analyse the connectivity of crystal structures. This

connectivity – how and how far an atom is bonded to its

neighbours in a certain structure under given experimental

conditions – is the simplest feature we can extract from the

atomic coordinates and the result of both the thermodynamic

and kinetic conditions in which the structure was formed. In

particular, a structure with low kinetic constraints, close to its

equilibrium, will show a low degree of over- or under-bonding

on each of its atoms. A quantification of this over-/under-

bonding is thus a measure of the state of the structure and an

indication of its susceptibility to evolve and release the accu-

mulated constraints (diffusion, charge transfers, phase transi-

tions, domain formation etc.).

Very fine details can nowadays be obtained on the atomic

and electronic structure of molecular compounds, provided

that excellent experimental data at high resolution are avail-

able; on the other hand, some characteristic features of non-

molecular structures which do not commonly occur in mole-

cular compounds, like the presence of isomorphic substitu-

tions, are not necessarily taken into account in the algorithms

and software packages devoted to the analysis of the electron

densities (Zarychta et al., 2007). Ab initio quantum-chemical

analysis of crystal structures are becoming more and more
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accessible, but their target is more on complex electronic

interactions – besides the fact that a quantum-chemical

analysis of relatively simple problems like the connectivity of

crystal structures would correspond to cracking a nut with a

sledgehammer.

An ideal tool for the study of connectivity of crystal struc-

tures is graph theory, of which some examples of applications

are given in this article. Today, powerful tools like TOPOS

(Blatov et al., 2014) are available, but for this analysis the

‘strength’ of each bond and the results of the distribution of

this ‘strength’ about each atom need a quantitative measure.

Pauling’s bond strength was introduced for uniform coordi-

nation polyhedra1 as the ratio of the ‘charge’ (formal oxida-

tion number) to the coordination number of the

electropositive atom. For general polyhedra, the concept of

coordination number is less well defined (Hoppe, 1970) and an

apparently simple concept like the ionic radius needs correc-

tions for coordination number and valence (Zachariasen,

1931; see also the discussion in Beck, 2014); furthermore, a

dependence of the bond strength from the bond length had to

be introduced. This had actually been recognized since before

Pauling’s landmark paper (see Zachariasen, 1978a) and was

obtained through the use of empirical curves (commonly

called ‘R–s curves’), whose parameters are obtained by fitting

on a large set of structures, in what is known as the bond

valence (BV) method (Brown, 1978). A general expression of

the R–s curve can be written in the form s = s0(R/R0)
�N, where

R is bond distance and where up to three kinds of empirical

parameters are used: R0, the normalizing parameter, close to

the mean bond distance; N, the contraction parameter,

responsible for the decreasing weight of each bond with the

distance; and s0, a scaling parameter (Nespolo et al., 1999). The

coordination number is obtained a posteriori by counting the

number of neighbours for which bond valence is significant.

The BV approach presents some limitations:

(i) the empirical parameters are characteristic of the pair of

atoms involved in a chemical bond;

(ii) the refined parameters depend on the experimental

conditions on which the representative set of structures has

been obtained, and the extrapolation to different conditions

can be problematic;

(iii) the empirical parameters are far from established for all

and may depend even on the type of polyhedra (Mills et al.,

2009);

(iv) a tendency to try to extract information hardly present

in such a simple analysis, in particular electronic details, from

the R–s curves is often seen in the literature.

A fundamentally different approach was introduced by

Hoppe (1979) and Hoppe et al. (1989) with the concepts of

effective coordination number (ECoN) and charge distribu-

tion (CHARDI), where the normalizing, contraction and

scaling parameters are no longer the result of a fit but directly

related to the geometry of each coordination polyhedron and

the formal charge (oxidation number) of the atoms building

the crystal structure. In the two previous articles of this series

(Nespolo et al., 1999; 2001) we have presented this approach

and its generalization to distorted polyhedra, hydrogen bonds

and heteroligand polyhedra, as well as a comparison to other

methods used to analyse the connectivity of crystal structures.

In this third part we present a further extension, to anion-

centred polyhedra.

2. ECoN and CHARDI for generalized polyhedra

In the CHARDI approach, atoms are considered in the clas-

sical Madelung’s description as point charges where the formal

‘charge’ corresponds to the oxidation number. This descrip-

tion does not imply, however, the presence of ionic bonds, but

simply the existence of bonds between electropositive and

electronegative atoms, which will be hereafter termed ‘cations’

and ‘anions’ for the sake of briefness due to the positive and

negative formal charge attributed to them.

ECoN can be defined for any type of coordination,

including incomplete polyhedra and general valence

compounds (i.e. compounds in which either the cations do not

transfer all their valence electrons or the anions do not need as

many electrons from the cations to complete their octet shells;

Parthé, 1996); the CHARDI analysis, instead, in general is not

applicable to polyions (see, however, the examples in Nespolo

et al., 2001), as well as compounds with delocalized electrons

(metallic bond).

The CHARDI approach has so far been presented by

assuming the cations at the centre of the coordination poly-

hedra. This description is the classical one and is suitable for

most compounds: the fact that anions have, in general, larger

size leads them to occupy the larger part of the crystal volume,

while cations fit the holes formed by the anion distribution.

However, in relatively recent years a number of examples

have been reported of compounds having anion-centred

groups which are condensed in a more complicated manner

than the cation-centred groups. Some enlightening examples

are considered in the next section; see a comprehensive review

in Krivovichev (2009) and Krivovichev et al. (2013). These

examples have prompted us to implement an extension of

CHARDI analysis where the role of cations and anions can be

exchanged. The CHARDI equations are thus presented here

in a revised form, where atoms in a crystal structure are

classified as ‘polyhedron-centring atoms’ (PC atoms) and

‘vertex (corner) atoms’ (V atoms). The assignment of cations

and anions to each of the two categories can be interchange-

able.

PC atoms and V atoms are indicated as PC(ij) and V(rs),

respectively, where i and r identify the atomic site, whereas j

and s refer to the crystallographic type. The formal charges

(which become the weighted average in isomorphic substitu-

tions) are indicated as q(ij) and q(rs), which depend on j or s

through the site occupation factor (s.o.f.): for s.o.f. = 1, all the

PC atoms with the same i, as well as all the V atoms with the

same r, have the same q. Similarly, the multiplicity of the

Wyckoff position is indicated as h(ij) and h(rs). The Lth bond

length between PC(ij) and V(rs) is indicated as d(ij ! rs)L.
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1 Regular, quasi-regular and semi-regular polyhedron, i.e. polyhedra in which
the distances from the centre to the vertices are all identical.
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For computational purposes, the bond lengths are classified in

increasing length with respect to i, j and r; d(ij! rs)1 being the

shortest and s a sort of dummy index at this stage.

The mean PC—V distance in each polyhedron is computed

through a weighted average2

nd ij ! rð Þ ¼
P

s

P
L d ij ! rsð ÞL � n�1w ij ! rsð ÞLP

s

P
L

n�1w ij ! rsð ÞL
n�1w ij ! rsð ÞL ¼ exp 1� d ij ! rsð ÞL

n�1d ij ! rð Þ
� �6

( )

0d ij ! rð Þ ¼ d ij ! rsð Þ1; ð1Þ
where n is an iteration index and the weight n�1w(ij ! rs)

takes the form of an exponential responsible for the asymp-

totic decrease of the contribution of each bond with the

increasing of its length. The shortest PC—V distance in each

polyhedron is used as a normalizing parameter at the zeroth

stage of the iteration, to be replaced by the weighted average

until convergence is reached (see Appendix A for proof that

the iterative process is convergent).

The ‘strength’ of the d(ij ! rs)L bond is measured by the

bond weight BW(ij ! rs)L, which is simply an expression of

the weight w(ij ! rs) once convergence is reached3

BW ij ! rsð ÞL ¼ w ij ! rsð ÞL ¼ exp 1� d ij ! rsð ÞL
nd ij ! rð Þ

� �6
( )

:

ð2Þ
Finally, the sum over the bond weights gives the effective

coordination number (ECoN), defined both in terms of PC(ij)

and V(r), ECoN(ij ! r), and of PC(ij) only, ECoN(ij)

ECoN ij ! rð Þ ¼
X
s

X
L

BW ij ! rsð ÞL

ECoN ijð Þ ¼
X
r

ECoN ij ! rð Þ: ð3Þ

ECoN, as a generalization of the classical coordination

number, is a real number that has to become equal to the

integer coordination number for uniform polyhedra. This is

the condition imposed to obtain the contraction parameter 6 in

the definition of the weight w(ij ! rs). It was in fact obtained

by finding the highest value giving an ECoN equal to the

number of first neighbours in the structure of simple metals,

where a clear separation between a first and a second coor-

dination sphere exists (Hoppe, 1979). For the very special case

of hydrogen bonds, where the ratio of two short distances

(donor-H and H-acceptor) with a high relative gap made the

weight w(ij ! rs) for the second bond negligible, a revised

contraction parameter of 1.6 has been introduced (Nespolo et

al., 2001).

CHARDI distributes ECoN(ij ! r) among all the bonds

around each PC(ij), obtaining in this way the contribution by

each V(rs) to ECoN(ij ! r) itself

�ECoN ij ! rsð Þ ¼
P

L BW ij ! rsð ÞL
ECoN ij ! rð Þ : ð4Þ

As equation (4) clearly shows, this is a geometrical analysis of

the connectivity of the crystal structure. In a correctly refined

and well balanced structure, the distribution of ECoN among

the PC—V bonds should sum up to some expected value for

both PC(ij) and V(rs). As the expected value, the formal

charge is used: �ECoN is multiplied by the scaling parameter

q(ij). A scale factor F(ij ! r) is also introduced for hetero-

ligand polyhedra (Nespolo et al., 2001)

�q ij ! rsð Þ ¼ �ECoN ij ! rsð Þq ijð ÞF ij ! rð Þ: ð5Þ
When summing on the PC atoms about a V atom, one should

obtain the expected ‘charge’ of the V atom itself

Q rsð Þ ¼ �
X
i

X
j

�q ij ! rsð Þ h ijð Þ
h rsð Þ : ð6Þ

The ratio of the multiplicities of the respective Wyckoff

positions, h(ij)/h(rs), is introduced to avoid counting multiple

contributions when a bond relates atoms on Wyckoff positions

with different multiplicities.

A similar distribution is repeated the other way round and

summed up on the V atoms about a PC atom. This time,

however, instead of using q(rs) as the scaling parameter, in a

perfectly symmetrical way, the ratio q(rs)/Q(rs) for the V(rs)

bonded to PC(ij) is used

Q ijð Þ ¼
X
r

X
s

�ECoN ij ! rsð Þ q rsð Þ
Q rsð ÞF ij ! rð Þ

" #

q ijð Þ ¼
X
r

X
s

�q ij ! rsð Þ q rsð Þ
Q rsð Þ: ð7Þ

If q(rs)/Q(rs) = 1 for each r and s, then the bracket in

equation (7) goes to 1 (it becomes the sum of the fractions of

ECoN about each PC atom) and thus Q(ij) = q(ij). This shows

that in a structure correctly solved and perfectly valence-

balanced, the distribution of ECoN scaled by the formal

charges gives back these charges. On the other hand, when a

structure has developed some structural tensions, its V atoms

may not be perfectly balanced but the distribution of this

unbalance, measured by the ratio q(rs)/Q(rs), should give back

the expected formal charges on the PC atoms, otherwise the

whole set of coordination polyhedra would be unbalanced and

the structure would be unstable. In other words, CHARDI

possesses an internal criterion to evaluate the quality of its

analysis: the ratio q(ij)/Q(ij) for the PC atoms. When this ratio

is reasonably close to 1, then the analysis of the connectivity

can be approached by the study of Q(rs), which diverge from

q(rs) proportionally to the structural strains inside the struc-

ture. One speaks of the over–under-bonding (OUB) effect

(Nespolo et al., 1999, 2001). Quite obviously, in the trivial case
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2 With respect to the previous articles, to simplify the equations we have
dropped the multiplicity of the bond distances: when multiple bonds
correspond to the same distance for symmetry reasons, they are simply
counted separately in the summation.
3 In the previous article (Nespolo et al., 2001), when the iterative calculation of
ECoN was introduced we used the notation nECoN to differentiate the values
of ECoN obtained with and without iteration and emphasize the better results
given by this procedure in the presence of significant deformation of the
coordination polyhedron. The non-iterative calculation being no longer used,
here we drop the exponent n in all quantities but nd(ij ! r) to simplify the
notation.
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of structures containing only one type of V atom there is

nothing to distribute, Q(rs) is identical to q(rs) and the

CHARDI analysis simply does not apply.

As an overall measure of the agreement between q and Q

for the whole sets of PC atoms and of V atoms, the mean

absolute percentage deviation (MAPD) is used

MAPD ¼ 100

N

XN
i¼1

qi �Qi

qi

����
����: ð8Þ

MAPD is preferred to the data dispersion used in previous

versions of the algorithm, defined as a sort of generalization of

standard deviation, because the latter tends to overestimate

the deviation, especially in the case of a small number of

atoms. Although it is not possible to indicate a precise

threshold above which the result should be considered unac-

ceptable, it is quite obvious that the expected MAPD value on

the PC atoms is lower than that expected on the V atoms,

because the former is a signature of the correctness of the

structure and of the applicability of the model, whereas the

latter measures the OUB effect. A statistical analysis of a large

number of samples would be necessary to give precise inter-

vals, but as a rule of thumb a value above 10% for the PC

atoms seriously questions the interpretation of the analysis, or

possibly the correctness of the refinement. For V atoms, a

value below 5% indicates the low OUB effect, which then

increases proportionally to MAPD. A value about 20% seems

hardly meaningful, because it would correspond to a strong

OUB effect which would probably make the structure

unstable: it could however be realised in metastable structures

quenched outside their stability region.

PC atoms and V atoms were previously identified with

cations and anions, respectively. We are going to show through

a series of examples discussed in detail that:

(i) some structures which would be unacceptable when

described as cation-centred actually find their rationale if a

description as anion-centred is adopted; and

(ii) the parallel analysis of the results in both descriptions

sometimes reveals details that would escape when only one

description is adopted.

To make this analysis as clear as possible and to avoid any

possible confounding factor coming from the presence of the

hetero-ligand polyhedra in one description but not in the

other, we have chosen binary compounds for the following

discussion.

3. Why anion-centred polyhedra?

Living in an oxygen-rich environment we have probably over-

estimated the structural role of cation-centred polyhedra that

are so neatly defined in a geometric sense in higher metal

oxides. However, we should expect that electronegative atoms

diluted in a metallic solvent such as occurs in lower metal

oxides give way to anion-centred polyhedra. The case of

cuprite is well known: It is hardly possible to use the linear

coordination of Cu as a structural descriptor and one is clearly

led to consider Cu2O as consisting of corner-sharing [OCu4]

tetrahedra. Similarly the elusive sodium nitride Na3N with the

anti-ReO3-type structure consists of corner-sharing [NNa6]

octahedra (Fischer & Jansen, 2002). Sub-stoichiometric oxides

are no less interesting, although not so many compounds are

described in structural databases and the CHARDI analysis

does not necessarily apply to all of them, in particular when

the coordination environment of an atom includes atoms of

the same family (e.g. in the presence of metallic bonds).

In such oxides as Ti3O, V14O6 or Zr3O only octahedral

coordination of O is clearly defined. In lower Cs oxides, face-

sharing oxo-centred octahedra [OCs6] are present as clusters

of three octahedra with a common edge in Cs4O and Cs11O3 or

as infinite columns in Cs3O, which is anti-isopointal with �-
TiCl3. Even the structural chemistry of alkaline oxides is worth

reviewing in this perspective. Almost all these M2O oxides

adopt the antifluorite structure with the exception of Cs2O,

which is anti-isotypic with CdCl2. Owing to the 2:1 stoichio-

metry, the antifluorite structure is composed of [MOn] cation-

centred polyhedra and [OM2n] oxo-centred polyhedra. In the

case of Rb2O the [RbO4] tetrahedron is probably under high

stress due to the similar size of both ions, and the structure is

probably stabilized by the cubic coordination of O. However,

both tetrahedral coordination of Cs and cubic coordination of

O seem to be untenable in Cs2O, the structural motifs of which

are octahedral [OCs6] and trigonal pyramidal [CsO3].

We notice that most compounds described as anion-centred

in Krivovichev (2009) and Krivovichev et al. (2013) have been

considered to possess an additional oxygen atom, which for

this atom corresponds to low concentration. Thus, in general,

stoichiometry should be considered as one of the relevant

factors, along with ionic size and other chemical properties, in

order to estimate the relative structural significance of cation-

and anion-centred polyhedra, but both should definitely be

taken into account as complementary aspects of the topology

of crystal structures.

There is, however, a further reason to sometimes adopt an

anion-centred description, even if the topology of the crystal

structure does not call for it. As shown by equation (6), the

charge of a Vatom is computed as a function of the charges of

the PC atoms bonded to it. Let MmAa be the maximally

simplified formula for a compound under consideration,

containing m ‘cations’ (electropositive atoms) M and a

‘anions’ (electronegative atoms) A. Let one or more sites be

statistically occupied by more than one M (A, respectively)

with different formal charge (the chemical species can be

equal or different). By treating M (A) as a V atom, CHARDI

computation suggests a formal charge for the site, which is

indicative of the statistical occupancy of this site. In the case of

atoms of the same chemical species, this information can be

difficult to obtain from the experimental data, while CHARDI

can instead provide a decisive indication. The same is true

when M (A) atoms with variable valence coexist in the same

structure: the difference between the pair Mi
p+Mj

q+ and

Mi
(p � n)+Mj

(q + n)+ or between Ai
p�Aj

q� and Ai
(p � n)�Aj

(q + n)�

may be hard to establish, while CHARDI gives a clear indi-

cation if M (A) is treated as a V atom. On the other hand,
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because the charges of the PC atoms are computed as a

function of the ratio q/Q of the computed and input charges of

V atoms [equation (7)], the result does not provide similar

information. In other words, by describing a structure

containing isomorphous substitutions on M (A) first of all as

A-centred (M-centred), important indications about the

formal charge of the M (A) site can be obtained which can

then be exploited to provide the opposite description, centred

on M (A). Because isomorphous substitutions are much more

common among cations, this procedure will be used more

often to estimate the charges of a cation site on the basis of an

anion-centred description; the opposite case is certainly less

common. As an illustrative example, in the following we

present this type of procedure applied to the case of Magnéli

phases.

4. Bond graphs and digraphs

Data concerning the structure of chemical compounds are

commonly summarized in the form of a graph, where atoms

are symbolized by a vertex (or a point) and a bond between

two atoms is symbolized by an edge (or a line) joining the

corresponding vertices; this graph is called the bond graph of

the structure. It is trivial, for instance, to write the structure of

the molecule of water as H—O—H: this is a graph with three

vertices (H, O, H) and two edges noted as a link (—) between

pairs of atoms. It must be stressed that no hypothesis is made

here about the nature of the bond. In particular, the link (—)

does not refer to a Lewis electron pair, it only expresses the

fact that these atoms are bonded. The general question is:

How can we know which atoms are bonded in a given struc-

ture, and how are we to represent the bond graph of an infinite

solid? As mentioned above, atomic (ionic) radii cannot be

relied upon to find pairs of bonded atoms in low-symmetry

structures. The theory of atoms in molecules (AIM; Bader,

1994) is the only quantum-mechanical theory applicable to

open systems. AIM characterizes a bond as a critical point

with the right signature in the electronic density of molecules

or solids. This density may be obtained on theoretical grounds,

using ab-initio quantum chemical calculations, or on experi-

mental grounds using density maps derived from high-reso-

lution diffraction techniques. In the absence of such data, the

CHARDI method proposes a posteriori computations to

determine coordination polyhedra in solids based on a very

simple hypothesis, and using only geometrical information.

However, dichotomy between cations and anions yields two

interpretations of the structure which may be in agreement but

sometimes seems to be in contradiction, so that the bond

graph may be ill-defined. To remedy real or apparent discre-

pancies, we introduce the concept of the bond digraph, which

will be better explained using an example (see also the

Glossary inAppendix C). Although the next section deals with

the topological properties of the structure, charge distribution

results will be discussed at the same time to avoid any

discontinuity in the analysis of structural details.

4.1. B2O3: a case study

We apply CHARDI to analyze some structural details

concerning the crystal structure of diboron trioxide; this will

lead to defining the corresponding bond digraph. We look first

at the well behaved low-pressure trigonal B2O3-I phase whose

structure was published by Gurr et al. (1970). The asymmetric

unit (space-group type P31) contains two B and three O atoms.

Tables 1 and 2 display some computation results obtained by

CHARDI, running with cation-centred and anion-centred

polyhedra. Bond lengths display a rather small dispersion in

this structure and this makes it possible to cast the five kinds of

coordination polyhedra (BOn and OBm) determined by

CHARDI as a single array, which is displayed in Table 1.

Running the cation-centring routine of CHARDI, one finds

that every B atom is coordinated to three O atoms, one of each

type, which is in agreement with classical views about this

structure. Conversely, running the anion-centring routine one

sees that every O atom is coordinated to two B atoms, one of

each type. Rows in Table 1 give bond lengths in cation-centred

coordination polyhedra and columns give bond lengths in

anion-centred polyhedra. These data allow the construction of

the bond graph shown in Fig. 1. Explicitly, the bond graph has

five vertices: two for B atoms (Bi, i = 1, 2) and three for O

atoms (Oj , j = 1, 2, 3), and six edges: one for each bonded pair

(Bi,Oj), i = 1, 2 and j = 1, 2, 3.
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Table 1
CHARDI coordination polyhedra in B2O3-I (P31); distances in Å.

O1 O2 O3

B1 1.404 1.366 1.336
B2 1.338 1.403 1.386

Table 2
CHARDI computation results for B2O3-I (P31).

B1 B2 O1 O2 O3 MAPD

Cation-centring 3.00 3.00 �2.01 �1.89 �2.10 (0, 3.5%)
Anion-centring 3.03 2.97 �2.00 �2.00 �2.00 (0.1, 1.0%)

Figure 1
Graph of the asymmetric unit of B2O3-I including bond lengths (Å) and
charge distribution (CHARDI) computation results within brackets. B
atoms are shown in black and O atoms in grey.
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Table 2 gives the computed charge distribution on each kind

of atom with cation-centred polyhedra (first row) and anion-

centred polyhedra (second row). In both cases, MAPD are

indicated as a couple of values where the first one refers to the

PC atom on the respective row. The null MAPD obtained on

PC atoms in both situations shows that both descriptions are

consistent and meaningful. This result enables a joint inter-

pretation of the charge distributions obtained from cation-

and anion-centring routines, which will be advantageously

performed using the bond graph. Because MAPD are null at

the PC atoms, input charges (in fact formal oxidation

numbers) were not reported in the figure. Thus, charges

displayed at B/O atoms are those calculated by the anion-/

cation-centring routine of CHARDI. This way, the bond graph

in Fig. 1 combines:

(i) structural information corresponding to the asymmetric

unit of the crystal structure and

(ii) charge distribution computed by CHARDI.

Interpretation of the data is based on bond lengths, which is

also reported in the bond graph. In fact, CHARDI computes

weighted average bond lengths for each polyhedron using

exponential weights [equation (1)], but in this simple structure

it is clear that B1—O distances (CHARDI average: 1.365 Å)

are slightly shorter than B2—O distances (CHARDI average:

1.370 Å). Similarly, centring on the anion gives the following

average distances.

CHARDI :
dðO1�BÞ ¼ 1:365 Å
dðO2�BÞ ¼ 1:382 Å
dðO3�BÞ ¼ 1:358 Å

8<
:

Charge distribution naturally correlates with these average

distances. Thus, the B1 atom being closer on average to its

three O neighbours than the B2 atom appears to be over-

bonded in this structure. The O2 atom being farther from its

two B neighbours than O1 and more particularly than O3 is

under-bonded, whereas the latter is over-bonded.

A refinement of the structure of the B2O3-I phase was more

recently published by Effenberger et al. (2001) who concluded

that this structure belongs to the higher space-group type

P3121. The asymmetric unit in this space-group type contains

only one B atom and two O atoms. Table 3 shows the bond

lengths for coordination polyhedra determined by CHARDI

using both the cation-centring routine (first row) and the

anion-centring routine (second and third rows). This table is

clearly asymmetric: B atoms make one bond to O2 atoms, but

these make two bonds to B atoms. Such asymmetry forbids the

construction of a bond graph but still allows the construction

of a bond digraph. By definition, the edges in a digraph are

directed, or one-way. So we may represent the set of bonds

between B and O2 in this structure by a digraph with two

vertices, B and O2, and three directed edges between B and

O2, one outgoing edge and two incoming edges at vertex B, as

in Fig. 2, where the direction of each edge is indicated by an

arrow. However, before we can validate such a construct and

obtain a full understanding of its meaning, we need to go back

to a bond graph representing the entire three-dimensional

structure.

Fundamentally, we will not need the infinite bond graph of

the whole structure but only a finite representative bond

graph, the vertex set of which corresponds to the set of atoms

in a primitive unit cell. In this particular case, bond graphs are

called quotient graphs. A quotient graph represents the

network of interatomic bonds for the set of atoms obtained by

applying to each atom in the unit cell the full set of translations

of the space group, i.e. the P1 translationengleiche subgroup

(t-subgroup) of the space group G. An atom occupying a

Wyckoff position of multiplicityM generates, under the action

of G, a crystallographic orbit (Engel et al., 1984). When the P1

t-subgroup is applied instead, this orbit is split into a set of M

suborbits, which in graph theory are called point-lattices

(Chung et al., 1984). Point-lattices are taken as vertices of the

quotient graph; two point-lattices are linked by an edge in the

quotient graph whenever two atoms of the respective sub-

orbits are bonded in the crystal structure. Multiple edges occur

when an atom in some point-lattice is linked to more than one

atom in another, or the same point-lattice.

The refinement of the structure of B2O3 proposed by

Effenberger et al. (2001) only affects the symmetry and not the

structural framework of the B2O3-I phase. The following

analysis is therefore independent of the symmetry assignment.

Let us start from the structure of highest symmetry. There are

3 unit formulae in the primitive cell. B and O1 atoms occupy

general positions (site symmetry 1) with multiplicity 6, while

O2 atoms are on special positions (site symmetry .2.) with

multiplicity 3. Hence, the quotient graph contains six atoms of

type B, six of type O1 and three of type O2. There are many

possibilities to insert edges according to Table 3; the correct

graph, shown in Fig. 3, may be recovered using the package

TOPOS (Blatov et al., 2014), for example after decreasing

symmetry down to space-group type P1.

Clearly, the quotient graph alone does not permit to recover

the three-dimensional structure. It only tells us about the
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Table 3
CHARDI coordination polyhedra in B2O3-I (P3121); distances in Å.

B O1 O2

B – (1.372, 1.376) 1.357
O1 (1.372, 1.376) – –
O2 (1.356, 1.357) – –

Figure 2
A digraph on the vertices B and O2.
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existence of bonds between atoms belonging to the different

point-lattices, but it does not specify which atoms in these

point-lattices are bonded. This can be done using the labelled

quotient graph, as explained in Appendix B. Here we are

mainly concerned with the determination of the bond digraph

of the asymmetric unit and this can be performed directly from

the quotient graph.

Let U = {ui}, V = {vj} be two vertex-orbits in the bond graph

of a crystal structure S under its space group G; then every

vertex in the set U is linked in S to the same number, say n, of

vertices in the set V. We can thus define a multiple (n-folded)

edge directed from U to V in the quotient digraph S/G. We

stress that vertices in set V are generally not linked to the same

number n of vertices in set U. This happens when bonded

atoms occupy sites with different multiplicity, in which case the

previous definition becomes inevitable. Note also that the

determination of the bond digraph can be done directly on the

quotient graph since there is no invariant atom by translation.

For instance, every B atom in B2O3-I is linked to a single

oxygen atom in the set O2, but every oxygen atom in the set

O2 is linked to two B atoms. This shows that we cannot define

the number of (conventional) edges between B and O2: there

is no consistent definition of a quotient graph in this case. We

must define a digraph with a single directed edge from B to O2

and two directed edges from O2 to B. In contrast, two edges

link every atom in B to atoms in O1 and conversely two edges

link every atom in O1 to atoms in B. Notice that directed edges

can be assigned symmetry operations (Klein, 1996; see also

Eon, 2012, for a comparison with symmetry-labelled quotient

graphs). The symmetry-labelled quotient digraph of B2O3-I is

shown in Fig. 4 with assignment in P3121; notice the symmetry

labels (voltages) such as � = 010.2.31 (the threefold screw

rotation 31 followed by the twofold rotation 2 and finally by

the translation 010) attributed to edge B—O1 indicating that

atom B[g] is linked to atom O1[g�] (see also the Glossary in

Appendix C).

Symmetry-labelled quotient digraphs must be carefully

handled, but they bear similar properties to labelled quotient

graphs. In particular, they still give a faithful representation of

the local topology of the crystal structure if one considers only

outgoing edges for each kind of atom. We may also define a

reduced quotient digraph as follows. Observe first that three

edges in Fig. 4 can be paired with another edge with the same

end-vertices in such a way that one edge out of each pair has

the inverse symmetry label (voltage) of the other edge of the

pair. For example, the edge O2–B with voltage 2 can be paired

with the unique edge B–O2, also with voltage 2. Paired edges

correspond to the same edge with opposite orientation in the

bond graph of the crystal structure. As mentioned at the

beginning of this section, the fact that there are two directed

O2–B edges and a single B–O2 edge means that B and O2

occupy sites with different multiplicities. In this case, we can

deduce the site symmetry of O2 as follows. Let us denote by

A[g] the atom mapped by applying the symmetry operation g

to atom A at the origin of the respective point-lattice. We read

from the symmetry-labelled quotient digraph in Fig. 4 that O2

is linked to B and to B[2]. Similarly, we read that B and B[2]

are linked respectively to O2[2] and O2[2.2] = O2. It follows

that O2 and O2[2] are the same atom, hence that O2 has site

symmetry .2.. From the viewpoint of the charge distribution

method it is enough to report independent edges, as shown in

Fig. 5. By definition every UV edge of the reduced quotient

digraph carries an n-folded arrow from vertex U, indicating

that n symmetry-equivalent edges in the bond graph of the

crystal structure connect any atom in vertex-orbit U to n

atoms in vertex-orbit V. For example, the double arrow out of

vertex O2 on edge O2–B in the reduced digraph means that

two directed edges go from O2 to B in the symmetry-labelled
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Figure 4
The symmetry-labelled quotient digraph of B2O3-I with respect to the
space-group type P3121; B atoms are shown in black and O atoms in grey.

Figure 5
The reduced quotient digraph of B2O3-I with respect to the refined space-
group type P3121; B atoms are shown in black and O atoms in grey. Bond
lengths (Å) are indicated above each edge and charge distribution
(CHARDI) computation results for O atoms within brackets. See text for
interpretation of simple and double arrows.

Figure 3
The quotient graph G of B2O3-I; B atoms are shown in black and O atoms
in grey. Atom types are in accordance with the space-group type P3121.
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quotient digraph, the two corresponding edges being

symmetry-equivalent in B2O3-I. If nU and nV are the number

of symmetry-equivalent edges UV from vertices U and V,

respectively, the ratio nV/nU is equal to the inverse ratio hU/hV
of the multiplicities of corresponding atom types in the crystal

structure.

Charge distribution (CHARDI) computation results for

cation-centred polyhedra are indicated within brackets in Fig.

5 with a MAPD of (0, 3.3%). Anion-centred polyhedra give (0,

0) MAPD; this result is a trivial consequence of the symmetry

of the reduced quotient digraph which reflects the fact that the

structure contains only one type of cation and has no physical

meaning. Again, interpretation of the results in the case of

cation-centred polyhedra may be based on weighted average

bond lengths.

CHARDI :
dðO1�BÞ ¼ 1:374 Å
dðO2�BÞ ¼ 1:357 Å

�

The O1 atom which is farther from its two boron neighbours

than O2 is under-bonded whereas the latter is over-bonded. It

was observed that the results (MAPD on anion charges) are

not really better than those obtained in space group P31. One

might wonder whether P3121 is the highest possible space

group for this phase. Analysis by the program Systre

(Delgado-Friedrichs & O’Keeffe, 2003) of the labelled

quotient graph in Fig. 6 shows that embeddings of the periodic

net associated with B2O3-I with space group P6422 cannot be

ruled out. The PSEUDO routine (Capillas et al., 2011) at the

Bilbao Crystallographic Server (Aroyo et al., 2006) shows a

significant degree of pseudo-symmetry of the structure refined

in P3121, which would be compatible with a translationengle-

iche supergroup of the type P6422 with atomic displacements

of 0.5013 Å (B), 0.5669 Å (O1) and 0.6968 Å (O2), respec-

tively.

Let us now look at the high-pressure orthorhombic B2O3-II

phase (Prewitt & Shannon, 1968) with reduced quotient

digraph shown in Fig. 7. As in the previous case, charge

distribution results for anion-centred polyhedra are trivial;

only oxygen values obtained for cation-centred polyhedra are

indicated in the figure. Again, weighted average bond lengths

provide the same interpretation as for the B2O3-I phase.

However, a worse MAPD is obtained (0%, 5.5%) clearly

evidencing the stress undergone by the high-pressure struc-

ture. It is worth noting that pressure-induced coordination

changes, from trigonal to tetrahedral for B atoms and from

angular to trigonal for one of the two oxygen types, do not

completely relax the mechanical stress.

4.2. Bi2O4

Our second example will illustrate the benefits of the

double CHARDI analysis, using both descriptions as cation-

and anion-centred polyhedra, combined with the analysis of

the bond digraph of the structure to show possible weaknesses

in the data. The structure of the mixed-valence (Bi3+, Bi5+)

oxide was reported by Kumada et al. (1995) who claimed it to

be isostructural with �-Sb2O4. CHARDI analysis does not give

satisfactory results for Bi2O4 neither using the description with

cation-centred polyhedra (11.4, 17.7%) nor as anion-centred

polyhedra (12.8, 19.5%). In comparison, the analysis

performed on �-Sb2O4 using data from Orosel et al. (2005) is a

little better: (4.1, 8.6%) with cation-centred polyhedra and

(5.1, 10.3%) with anion-centred polyhedra. An interpretation

is suggested at the inspection of the reduced bond graphs

shown in Fig. 8. Note first that the bond graph of Bi2O4 is not

consistent; Bi2 makes two bonds with O1 but there is no bond

from O1 to Bi2. This is due to a very long Bi2—O1 bond

(2.822 Å) with a bond weight of 0.043 which is not even

considered from the viewpoint of O1. As a consequence, O2 is

over-bonded and O1 under-bonded. The corresponding bond

in �-Sb2O4 is much shorter (2.356 Å), with a Sb2—O1 bond

weight of 0.410 and charges which are better balanced in this

structure. The comparison between these structures, which

were both obtained by refinement of powder diffraction data,

suggests that both may be imprecise, which would not be too

surprising considering the large difference in the scattering

power of bismuth and oxygen.

It might be argued that inconsistency could be avoided by

adding the missing bond to the respective anion- or cation-

centred description. However, bond weights and charge
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Figure 6
The labelled quotient graph of B2O3-I; B atoms are shown in black and O
atoms in grey.

Figure 7
The reduced quotient digraph of the high-pressure B2O3-II phase; B
atoms are shown in black and O atoms in grey. Bond lengths (Å) are
indicated above each edge and charge distribution (CHARDI)
computation results for O atoms within brackets.
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distributions would not be significantly altered to motivate a

new calculation. Besides being arbitrary, the inclusion of the

new bond would hide what we think is an intrinsic structural

feature. In this sense, inconsistency of the bond digraph points

to possible structural problems that are missed in other

methods such as BV.

5. Case study

We have extracted a number of well refined recent structures

for binary compounds from the Inorganic Crystal Structures

Database (ICSD: Belsky et al., 2002) and applied CHARDI

analysis. The results are presented in the following different

categories:

(i) structures described equally well as cation-centred and

anion-centred,

(ii) structures better described as anion-centred but worth-

looking as cation-centred, and

(iii) structures advantageously described as anion-centred.

5.1. Structures described equally well as cation-centred and
anion-centred

WO3 crystallizes in several polymorphs, depending on the

temperature and pressure. At ambient pressure, the following

phases appear on heating: " (Pc) ! � (P�11) ! � (P21/n) ! �

(Pcnb) ! � (P4/nnc) (Vogt et al., 1999). A high-pressure

polymorph, called HP, has been reported by Xu et al. (1997) in

P21/c: this is not a different cell setting of the � polymorph but

the product of a pressure-induced symmetrization of the �
polymorph which is already pseudo-monoclinic. Three

neutron powder refinements of the triclinic � polymorph have

been reported by Woodward et al. (1995), of which two are

from a mixture of � and � phases. The quality of the refine-

ment, as judged from the Rwp values, was definitely better for

the pure triclinic sample (Rwp = 0.0789) than for the mixtures

of phases (Rwp = 0.105 and 0.136). Indeed, the CHARDI

analysis for the refinements obtained from the mixture of

phases is worse, in both the cation- and the anion-centred

description, which points to possible problems in the refine-

ment. For the pure triclinic phase, the results are perfectly

satisfactory but do not privilege one description over the

other: MAPDs are 0.7% (PC atoms) and 3.8% (V atoms) for

the cation-centred description, and 1.4% (PC atoms) and

1.7% (V atoms) for the anion-centred description. For the

triclinic structures obtained from a mixture of phases the

MAPD values are the following:

Rwp = 0.105: 0.020 (PC atoms) and 0.088 (V atoms) in the

cation-centred description; 0.029 (PC atoms) and 0.034 (V

atoms) in the anion description.

Rwp = 0.136: 0.053 (PC atoms) and 0.115 (V atoms) in the

cation-centred description; 0.061 (PC atoms) and 0.072 (V

atoms) in the anion description.

As shown in x5.3.1, the other polymorphs are better

described as anion-centred structures.

5.2. Structures better described as anion-centred but worth
considering as cation-centred: KO3 as an example

Potassium trioxide (Schnick & Jansen, 1987) is interesting in

several aspects. Fig. 9 shows the reduced bond digraph of this

structure. At first sight, this digraph does not seem to be very

consistent; there is a twofold degenerated edge going from O1

to K2 but no corresponding edge from K2 to O1 (note the
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Figure 9
The reduced quotient digraph of KO3; K atoms are shown in black and O
atoms in grey. Bond lengths (Å) are on the side of the respective edge and
charge distribution (CHARDI) computation results for cation-centred
polyhedra are given within brackets; n-fold edge degeneracy is indicated
near the corresponding arrow as *n.

Figure 8
The reduced bond graphs of Bi2O4 and �-Sb2O4; cations are shown in
black and O atoms in grey. Bond lengths (Å) are on the side of the
respective edge and charge distribution (CHARDI) computation results
for cation-centred polyhedra are given within brackets.
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absence of an arrow on this edge on the potassium side). This

may be understood by comparing average bond lengths

d(O1—K) = 3.446 and d(K2—O) = 2.930 Å. The longer bond

with d(K2—O) = 3.865 Å is not considered by CHARDI in

the potassium coordination polyhedron.

The anion species in KO3 is obviously not the oxide ion, but

the O3
� ‘ion’. However, CHARDI input charges (formal

oxidation numbers) were arbitrarily taken as +1 and �0.33 for

potassium and oxygen atom types. With these values, the

charge distribution MAPDs were respectively (0.1, 0.4%) and

(9, 41.8%) for computation based on anion-centred and

cation-centred polyhedra. The good MAPD for anion-centred

polyhedra suggests that the structure is well balanced from the

viewpoint of O atoms. Hence, charge distributions for cation-

centred computation, indicated in the figure, may be consid-

ered to obtain new insight into the structure. In this case,

charges on O atoms may be interpreted by looking at

CHARDI-calculated average bond lengths d(O1—K) =

3.446 Å and d(O2—K) = 2.860 Å. O1 is the central oxygen in

the O3
� species and, being much farther from potassium than

terminal O2 atoms (see Fig. 10), charge distributions indicate

that it is rather loosely bonded (under-bonded) to potassium.

This result is in agreement with the existence of internal O—O

bonds in the O3
� species. Interestingly, however, CHARDI

computation results suggest that the central O atom is

nevertheless bonded to potassium in this structure.

5.3. Structures advantageously described as anion-centred

5.3.1. WO3. Of particular interest for our purposes are the

monoclinic and triclinic polymorphs, which present more than

one crystallographic type of both W and O. The � polymorph

has been studied twice by the same group, from powder

neutron diffraction data, with unequal quality of the refine-

ment. The second report (Vogt et al., 1999) was of better

quality and shows a markedly better description of the

structure as anion-centred (MAPD 0.4 and 0.6% on PC and V

atoms, respectively, with respect to 2.2 and 3.5% for a cation-

centred description). The cation-centred description presents

two highly distorted octahedra (ECoN = 4.73 and 4.25,

respectively), whereas the anion-centred description gives six

dumbbells, three being close to symmetric (ECoN = 1.99, 1.97

and 1.72 for O1, O2 and O3, respectively) and three highly

asymmetric (ECoN = 1.27, 1.09 and 1.10 for O4, O5, and O6,

respectively). Interestingly, the most symmetric dumbbells

form chains along the a axis, the least symmetric ones form

chains along the c axes and the intermediate ones form chains

along the b axis.

5.3.2. Magnéli phases. Vanadium oxides VnO2n � 1 (3 � n �
9) form a homologous series (Ferraris et al., 2008) known as

Magnéli phases (Andersson et al., 1957). The modular struc-

ture of these compounds has been described as a sequence of

rutile-type (VO2) slabs separated by crystallographic slip

(CS)4 planes of corundum-type (V2O3). Rutile slabs are infi-

nite in two directions and n [VO6] octahedra wide in the third

direction. The structure contains two kinds of parallel chains

of octahedra linked by sharing vertices, edges or faces. The

rutile block contains linear chains of corner-sharing octahedra;

the CS plane contains zigzag chains consisting of double, face-

sharing octahedra linked by edge-sharing. It is believed that

V4+ ions preferentially occupy the zigzag chain. The CS

operation occurring at a variable interval in the parent VO2

structure is a structure mechanism that yields a change in the

chemical composition that accompanies the structural change.

Such a mechanism is known as tropochemical cell-twinning

(Takéuchi, 1997; for a more recent review about modular

structures see Nespolo et al., 2004). The first terms of the

series, namely V3O5, V4O7 and V5O9 display a metal-insulator

transition which was interpreted as valence ordering at low

temperature.

The high-temperature phase of V3O5 = VO2 + V2O3 is

monoclinic I2/c and contains two vanadium crystallographic

types. The eightfold V(1) position corresponds to the double

octahedra located at the CS plane and the fourfold V(2)

position belongs to the rutile slab. Hong & Åsbrink (1982)

argued that the ideal valence distribution should be a 50:50

mixture of V3+ and V4+ on the V(1) type and only V3+ on the

V(2) type. The low-temperature phase belongs to the klas-

sengleiche subgroup P2/c of index 2 in I2/c, so that vanadium

positions V(1) and V(2) split into V(11), V(12) and V(21),

V(22) respectively. At the transition, ordering occurs in the

zigzag chains with V4+ ideally located at the V(11) position

and V3+ at the V(12) position.

In fact, using Zachariasen’s (1978b) equation, Hong &

Åsbrink (1982) calculated that the mean valences at positions

V(1) and V(2) in the high-temperature phase are 3.42 and

3.15, respectively, not much different from the expected values

3.5 and 3.0. In the same way they showed that the mean

valences at positions V(11), V(12), V(21) and V(22) are 3.87,

3.06, 3.06 and 3.07, respectively. These results are consistent

with valence ordering in the CS plane.

CHARDI analysis was applied to both structures, using

cation-centred and anion-centred polyhedra. As discussed

above, the computed charge on the V atoms represents an

indication of the formal oxidation number of these atoms,

whereas those on the PC atoms are the result of the distri-

bution of input charges. For the cation-centred description, the

CHARDI calculation provides an indication of the oxidation

number for the anions, which in these examples are estab-

lished: as expected, the results are in very good agreement
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Figure 10
Local structure around O1 in KO3; O1—K bonds are not shown.

4 About the use of crystallographic slip instead of crystallographic shear see
Takéuchi (1997)

electronic reprint



with the input charges. On the other hand, the oxidation

number of the cation sites depends on the distribution of V3+

and V4+ and the anion-centred description gives a clear indi-

cation of this distribution. The computed charges are 3.40 and

3.19 for V(1) and V(2) in the high-temperature phase but 3.90,

3.02, 3.18 and 2.98 for V(11), V(12), V(21) and V(22) in the

low-temperature phase, respectively, in good agreement with

the results published by Hong & Åsbrink (1982). The results

are summarized in Fig. 11, where it is clear from the structure

of the bond digraph that they are not trivial. We stress that

CHARDI analysis with anion-centred polyhedra does not

demand a correct valence for cations in the initial data sheet;

instead it is a primary result of the calculation. As these

examples clearly show, the method is quite suited to the

analysis of mixed-valence oxides.

Both low- and high-temperature V4O7 = V2O4 + V2O3

crystallize in the same space-group type (A�11: the unconven-

tional setting is used to keep a common axial reference for the

members of the homologous series) with four formula units

per unit cell (Marezio et al., 1973). The rutile slabs are four

octahedra wide and consist of two non-equivalent finite chains,

namely V(3)–V(1)–V(1)–V(3) (chain 3–1) and V(4)–V(2)–

V(2)–V(4) (chain 4–2), where V(3) and V(4) belong to the CS

plane. Mean valences have been calculated for both structures

by Hodeau & Marezio (1978) using Zachariasen’s method.

They reported for the high-temperature phase (at 298 K)

3.64–3.53 and 3.48–3.35 for chains 3–1 and 4–2, respectively,

indicating the statistical distribution of V3+ and V4+ among the

four vanadium positions. The results for the low-temperature

phase at 200 K are 3.84–3.83 and 3.11–3.22 for chains 3–1 and

4–2, respectively, suggesting the segregation of V4+ on chain 3–

1 and V3+ on chain 4–2. CHARDI analysis with anion-centred

polyhedra provided charges 3.66–3.50 and 3.51–3.34 at 298 K

and 3.91–3.80 and 3.17–3.12 at 200 K for chains 3–1 and 4–2,

respectively.

As a last example, we look at V5O9 = 3VO2 + V2O3. The

high- and low-temperature phases crystallize in space groups

of the type P�11, respectively, in the B�11 and P�11 settings, and

display rutile slabs five octahedra wide (Le Page et al., 1991).

Twofold vanadium positions have been labelled as V(10) and

V(20), while fourfold vanadium positions are labelled as

V(11), V(12), V(21) and V(22) in the high-temperature phase.

In the low-temperature phase every fourfold position splits

into two twofold positions denoted with a prime: V(11) for

instance splits into V(11) and V(110). There are again two

kinds of rutile chains in both structures. In the low-tempera-

ture phase these are V(12)–V(11)–V(10)–V(110)–V(120) and
V(22)–V(21)–V(20)–V(210)–V(220). The chains in the high-

temperature phase are obtained by withdrawing the prime. In

the high-temperature structure valences were calculated in the

same way as previously by Le Page et al. (1991) to be 3.66–

3.42–3.55–3.42–3.66 and 3.62–3.56–3.64–3.56–3.62 using the

same sequence as above. The mean valence of vanadium in

this phase being 3.6; the results indicate a statistical distribu-

tion of V3+ and V4+ among all positions. Accordingly,

CHARDI analysis with anion-centred polyhedra provided the

charges 3.77–3.46–3.48–3.46–3.77 and 3.68–3.54–3.62–3.54–

3.68 following the same sequence. For the low-temperature

structure Le Page et al. (1991) reported mean valences of 3.80–

3.18–3.36–3.23–3.18 and 3.87–3.78–3.86–3.82–3.86 also

following the same sequence as above, suggesting that the

second chain is fully occupied with V4+ while the first chain has

a single V4+ at one of its ends. CHARDI analysis with anion-

centred polyhedra provided similar results: 4.12–3.15–3.21–

3.15–3.19 and 4.03–3.80–3.79–3.71–3.85, again following the

same sequence as above.
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Figure 12
The reduced quotient digraph of monoclinic Sm2O3; Sm atoms are shown
in black and O atoms in grey. Bond lengths (Å) are indicated on the side
of respective edge and charge distribution (CHARDI) computation
results for cation-centred polyhedra within brackets.

Figure 11
The reduced quotient digraph of the high-temperature V3O5; Vatoms are
shown in black and O atoms in grey. Bond lengths (Å) are on the side of
the respective edge and charge distribution (CHARDI) computation
results for anion-centred polyhedra are given within brackets
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5.3.3. Sm2O3. Four isotypic monoclinic sesquioxides, crys-

tallizing in space groups of the type C2/m, present a charge

distribution which is remarkably more satisfactory when

described as anion-centred: Er2O3 (Wontcheu & Schleid,

2008), Eu2O3 (Yakel, 1979), Ho2O3 (Hering & Huppertz,

2009) and Sm2O3 (Boulesteix et al., 1971; Cromer, 1957).

These structures contain three crystallographically indepen-

dent cation sites (M1 to M3) and five crystallographically

independent anion sites (O1 to O5). They are very closely

related, the maximum distance between atomic positions of

paired atoms, taking the Er compound as reference, going

from 0.028 Å (Ho) to 0.062 Å (second Sm structure), as

computed by the COMPSTRU routine at the Bilbao Crys-

tallographic Server (Aroyo et al., 2006). The description is

given here for the Sm compound; the analyses for the other

compounds are closely related, given the tight structural

similarity.

Fig. 12 shows the reduced quotient digraph of the mono-

clinic C-Sm2O3 phase (Schleid & Meyer, 1989). This structure

is particularly interesting as CHARDI MAPD for the analysis

with anion-centred polyhedra is (0.1, 0.1%). In contrast,

MAPD for analysis with cation-centred polyhedra is (2.2,

14.6%). Only the charge distributions for the latter compu-

tation are displayed in the reduced digraph.

The situation is quite different for the cubic polymorph

(Saiki et al., 1985), which yields (0, 5.4%) MAPD for

computation with anion-centred polyhedra. The MAPD for

cation-centred polyhedra is trivial (0, 0) because of the

presence of only one type of anion, as clearly appears in the

reduced quotient digraph shown in Fig. 13.

To interpret the significant difference between the mono-

clinic and cubic phases of Sm2O3, we list in Table 4 the

weighted average bond lengths and effective coordination

numbers (ECoN) in each coordination polyhedron as they are

calculated by CHARDI. The first striking piece of information

is the average bond length d(O5—Sm), much larger than any

other. In fact, it is apparent in Fig. 12 that the neighbourhood

of O5, with four neighbours at 2.562 Å and two at 2.761 Å, is

rather different from that of the other O atoms. This must be

compared with the neighbourhoods of the Sm atoms which, in

contrast, are much more similar to each other. The three Sm

atoms have an ECoN close to 6 with all bond lengths nearly in

the same wide range. On the other hand, ECoN for O atoms

vary from little more than 3 to almost 6. It is also apparent that

the coordination polyhedra of oxygen types display rather well

defined geometries. O1 is square-pyramidal with one apical

short distance. O2 and O4 coordination polyhedra are irre-

gular tetrahedra. O3 is trigonal pyramidal with an apical long

distance. The coordination polyhedron of O5 is an elongated

octahedron. In comparison, samarium coordination polyhedra

are not well defined. Thus, from the geometrical point of view,

the structure appears to be effectively anion-centred.

On the other hand, the cubic polymorph has a much more

regular coordination: Sm1 occupies a regular octahedron

whereas Sm2 is in a slightly deformed octahedron, the

difference resulting from the different type of Wyckoff posi-

tion occupied by the two atoms. The O atom is instead in a

slightly deformed tetrahedron defined by one Sm1 and three

Sm2 atoms.

For the isomorphic europium sesquioxide (Yakel, 1979),

MAPD computed from anion-centred and cation-centred

polyhedra are (0.7, 1.4%) and (2.8, 12.5%), respectively,

following precisely the same trend as the samarium

compound. Note that Wu et al. (2007) have performed ab-

initio calculations of the structure of the terbium isotype; the

results of the CHARDI calculation on these computed

structures are (1.5, 2.9%) and (1.5, 13.3%), again confirming

the trend seen for the samarium compound.

5.4. Structures with only one type of site

The CHARDI analysis does not apply to structures

containing only one type of cation and one type of anion:

because there is nothing to distribute, the result is always in

perfect accordance.

When a structure contains only a single type of either cation

or anion, then the CHARDI analysis applies when this atom is

taken as a PC atom [if taken as a Vatom then the expression in

brackets in the equation for Q(ij) is systematically 1] and the

result tells us whether this description is reasonable or not.

Because binary structures tend to be compact and often of

rather high symmetry, there are many examples falling in this

category.

5.4.1. Li3N. Both structures of normal-pressure �-Li3N
(Rabenau & Schulz, 1976) and high-pressure �-Li3N (Beister
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Figure 13
The reduced quotient digraph of cubic Sm2O3; Sm atoms are shown in
black and O atoms in grey. Bond lengths (Å) are indicated above the
respective edge and charge distribution (CHARDI) computation results
for cation-centred polyhedra within brackets; the edge out of Sm1 is
sixfold (*6) degenerated.

Table 4
Weighted average bond lengths (Å) and ECoN for monoclinic and cubic
Sm2O3.

Monoclinic Cubic

Average distance (Å) ECoN Average distance (Å) ECoN

Sm1—O 2.385 6.13 2.311 6.00
Sm2—O 2.375 6.22 2.356 5.85
Sm3—O 2.324 5.38 – –
O1—Sm 2.458 4.78 2.343 3.91
O2—Sm 2.293 3.98 – –
O3—Sm 2.344 3.47 – –
O4—Sm 2.307 3.91 – –
O5—Sm 2.607 5.75 – –
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et al., 1988) contain a single type of anion (N3�) and two types

of cation (Li+). CHARDI analysis can then be applied using

only the anion-centred polyhedra. The results are (0, 3.3%)

and (0, 12.4%) for the � and � phases, respectively. The first

value (0%) is due to the singleness of the type of anion and

conveys no information. The second value indicates a better

charge distribution for the � phase. Since the structure of the �
phase was refined under ambient conditions, where it is

metastable, the unbalanced charge on the cations might indi-

cate that the crystal is under mechanical stress.

6. Discussion

The classical description of non-molecular solids as built on

cation-centred polyhedra finds its rationale in the fact that

‘anions’ (electronegative atoms) have generally larger size

than ‘cations’ (electropositive atoms) because of their higher

electronegativity. They thus occupy a significant proportion of

the crystal volume, with the cations then being confined in the

cavities left empty.

The size of an atom is not such a straightforward concept as

it is taught in fundamental chemistry courses. Indeed, the

spherical model which is behind the concept of covalent radius

is a rough approximation of the real atomic shape in molecular

compounds, which is more precisely described by a multipolar

model (Hansen & Coppens, 1978). The same also holds true

for ionic compounds, as shown by the direction-dependency of

the ionic radius in halides, which results in a polyhedral shape

for the atomic basins (Pendás et al., 1998). The limits of the

concept of ionic radius were long ago recognized by Hoppe

(1970), who called it an ‘inorganic chameleon’ and introduced

a ‘fictive ionic radius’ (FIR) to account for the variation of the

polyhedral size of one and the same ‘ion’ in the same crystal

(Hoppe, 1979).

An important consequence of the departure of the

atomic shape from the spherical model is that the volume

occupied by a cation (anion) is normally larger (smaller)

than that assumed by the spherical model. This is in

perfect accordance with the fact that the (absolute value of

the) real charge of an atom in a crystal, as computed by

integrating the electron density in the basin occupied by the

atom, is lower than the formal charge attributed to that atom

in a classical description within the framework of the valence

theory.

A Madelung-type description of a crystal structure like that

operated by CHARDI has the advantage of giving a

description which is operationally very simple of the topology

of the connectivity in the structure, but is by definition limited

to a spherical model of the atoms. The results of the more

sophisticated approaches cited above show, however, that the

relative sizes of the atoms have to be reconsidered. It is thus

not surprising that some structures are more satisfactorily

described as anion-centred: this is clearly the case for large

cations such as Sm2O3 and KO3 discussed here. But even for

smaller cations, as in B2O3, the alternative anion-centred

description can be meaningful.

APPENDIX A
Convergence of the mean PC—V distance

For the sake of clarity we rewrite the iteration expressions in

equation (1) as

f ðDÞ ¼
P

i dðiÞwðiÞP
i wðiÞ

wðiÞ ¼ exp 1� dðiÞ
D

� �6
( )

; ð9Þ

where:

(i) the sums run over a single index i representing both

crystallographic types of Vatoms and distances within the first

coordination sphere,

(ii) d(i) and w(i) are the respective distances and weights

and

(iii) D is a variable.

The new index is required to satisfy d(i) � d(j) whenever i < j.

Comparison with equation (1) shows that if the mean distance

at step n is written as nd = D that at step n + 1 is given by
n + 1d = f(D). The first derivative f 0of function f with respect to

D can be written as

f 0ðDÞ ¼ 6

P
i<jðdðjÞ � dðiÞÞðdðjÞ6 � dðiÞ6ÞwðiÞwðjÞP

i wðiÞ
� �2

D7
>0; ð10Þ

showing that f is strictly increasing. Let N be the coordination

number for the respective polyhedron; because f(D) is a

weighted average of distances d(i) for 1 � i � N with positive

weights we have d(1) < f(D) < d(N). Hence, 0d = d(1) < f(d(1))

= 1d < d(N) or 0d < 1d < d(N), on which inequality we may

apply f to obtain 1d = f(0d) < f(1d) = 2d < d(N), and by iteration

over n: 0d < 1d < 2d < � � � < nd < n+1d < � � � < d(N). The sequence
nd is thus strictly increasing and limited, which proves that it is

convergent.

APPENDIX B
The labelled quotient graph of B2O3

It is possible to use the package TOPOS to obtain the labelled

quotient of any crystal structure; for each edge AB in the

quotient graph, the program indicates the translation t such

that atom A and the translated t(B) are bonded in a three-

dimensional structure, where both A and B belong to the

origin unit cell. The result, displayed in Fig. 6, is called a

labelled quotient graph (Chung et al., 1984). There, required

translations t are indicated as vector labels (voltages) of

oriented edges. For example, edge B5—O13 is oriented from

B5 to O13 and has vector label 100, which means that the atom

of type B5 in the origin unit cell is bonded to the translated

atom O13 by 100. Note that labelled quotient graphs are

oriented, not directed. A directed edge may only be crossed

following its direction. An oriented edge may be crossed in

both ways; of course vector labels must be changed accord-

ingly. For example, edge O13–B5 has vector label �1100 and so

links atom O13 in the origin unit cell to the translated of atom

B5 by �1100.
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Bond digraph The directed graph associated with the asymmetric
unit of a crystal structure.

Bond graph The graph describing the framework of a crystal
structure. Also the graph describing the asymmetric
unit where this may be defined.

Digraph In a digraph (directed graph), every edge is a directed
edge.

Directed edges Directed edges are only one-way. A directed edge UV
cannot be crossed from V to U.

Graph A graph is determined by a set of vertices, a set of
edges and a mapping associating a pair of vertices to
every edge. An edge emapped to the pair of vertices
{U,V} is generally written e = UV. These pairs are
unordered: UV and VU are the same edge.

Oriented edges In a graph with an orientation, edges may be crossed in
any way but edge VU is the opposite of edge UV.

Point lattice A crystallographic orbit obtained by applying the P1 t-
subgroup of the space group G.

Quotient graph The graph of the orbits in the bond graph of a crystal
structure for the full translation subgroup of its
space group.

Vertex-orbit The set of all the vertices mapped one to the other by
the operations in a symmetry group.

Voltage over an edge The symmetry operation attributed to an edge in a
graph with an orientation. When the edge UV in a
symmetry-labelled quotient graph has voltage � the
vertex from vertex-orbit U in the crystal structure
indexed by the symmetry operation g (i.e. vertex
U[g] inU) is linked to the vertex from vertex-orbit V
indexed by the symmetry operation g� (i.e. V[g�]).
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