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It is shown that the twin index n calculated, according to Friedel, as a function of

the indices (hkl) and [uvw] of the lattice plane and lattice direction defining the

cell of the twin lattice applies only to twofold twins, i.e. twins where the twin

element is of order 2. For manifold twins, where the twin operation is a three-,

four- or sixfold (direct or inverse) rotation, it is shown that the generalized

formula becomes n = N�/�, where N is the number of lattice planes of the (hkl)

family passing within the cell of the twin lattice, � the two-dimensional

coincidence index for a plane of the (hkl) family and � the number of planes out

of N of that family that are partially restored by the twin operation. The

existence of twin lattice quasi-symmetry (TLQS) twins with zero-obliquity in

manifold twins leads to the introduction of a new parameter as a general

measure of the pseudo-symmetry of TLQS rotation twins: the twin misfit �,
defined as the distance between the first nodes along the two shortest directions

in the plane of LT (quasi-)perpendicular to the twin axes that are quasi-restored

by the twin operation. Taking the example of staurolite twins, several

inconsistencies in the treatment of manifold twins are pointed out.

1. Introduction

In this article, we use the same nomenclature and symbols

described in our recent study on hybrid twins (Nespolo &

Ferraris, 2006). Here we give a short summary of the basic

concepts of the reticular theory of twinning; more details can

be found in the quoted article.

A twin is a heterogeneous crystalline edifice consisting of

the oriented association of two or more homogeneous crystals

(individuals). A twin operation is a crystallographic operation

mapping the orientation of one individual on the orientation

of another individual. A twin element is the lattice element of

the individual (plane, row, centre) about which the twin

operation is performed: Mallard’s law (Friedel, 1926) states

that a twin element is always a direct-lattice element, although

it may sometimes be useful to use a reciprocal-lattice element

instead, especially when unravelling the diffraction pattern of

a twin, i.e. when the reciprocal lattice is inspected. The twin

operation is a coincidence operation for the lattice of the

individual (Lind hereafter) or a sublattice of it: the lattice

nodes that are brought to coincidence are said to be ‘restored’

and define the twin lattice, LT. This restoration may be exact or

approximate and correspondingly one speaks of TLS (twin

lattice symmetry) or TLQS (twin lattice quasi-symmetry),

respectively (Donnay & Donnay, 1974). Depending on the

nature of the twin operation, twins are classified as reflection

twins, rotation twins and inversion twins. In the latter case, Lind

coincides with LT. For rotation or reflection twins, instead, this

is not always the case and LT can be a sublattice of Lind. The

fraction of lattice nodes of LT restored by the twin operation

corresponds to the ratio of the volume of primitive cells of LT

and Lind.

The twin elements are (pseudo-)symmetry elements for the

twin lattice LT. A (pseudo-)symmetry plane (hkl) is (quasi-)

perpendicular to a lattice row [uvw], and a (pseudo-)symmetry

axis [uvw] is (quasi-)perpendicular to a lattice plane (hkl). The

cell of LT is defined by the pair [uvw] and (hkl) and the twin

index is easily computed in terms of the indices of these two

elements, without the necessity of passing through the volume

of the cells of Lind and LT (Nespolo & Ferraris, 2006). When

[uvw] and (hkl) are not mutually perpendicular, the twin is of

TLQS type; consequently, the symmetry of LT is close to a

higher holohedry and the degree of pseudo-symmetry is

normally given in terms of the obliquity, that is the angle

between [uvw] and the irrational direction perpendicular to

(hkl). These criteria were introduced by Friedel (1904, 1920,

1926) and are routinely applied today. Hereafter, we show that

they were implicitly limited to the case of twofold twins, i.e.
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twins where the twin operation is of order 2. In this article, we

prove that, for manifold twins, where the twin operation is a

three-, four- or sixfold (direct or inverse) rotation [for details

about definitions and classifications, see Nespolo (2004)], both

the formula to compute the twin index in terms of [uvw] and

(hkl) and the definition of TLQS in terms of the obliquity no

longer apply. We propose a generalization of both criteria. The

inconsistencies resulting from the uncritical application of

Friedel’s criteria to manifold twins are discussed by analysing

the example of the classical twins in staurolite.

2. Calculation of the twin index in manifold twins

The classical classification of twins in terms of twin index and

obliquity recognizes four categories (Table 1). Friedel’s

formula to calculate the twin index is (Grimmer & Nespolo,

2006; see also Donnay & Donnay, 1959, and Nespolo &

Ferraris, 2005)

n ¼ X=f

X ¼ juh þ vk þ wlj; ð1Þ

where f = 1, 2 or 4 depending on the Bravais-lattice type and

the parities of X, u, v, w, h, k, l. (u, v, w have to be co-prime

integers, ditto for h, k, l.) When u, v, w, h, k, l are expressed in

terms of a primitive basis of Lind, f = 1 or 2 depending on

whether X is odd or even.

Let us consider the primitive cell of Lind. X in equation (1)

gives the number of lattice planes of the (hkl) family between

two neighbouring nodes along the [uvw] direction. When the

cell of Lind is not primitive, the number of lattice planes

between these two nodes may be X/2, X or 2X, depending on

the parities of the indices (Table 2): we shall hereafter indicate

this number as N.

If the twin operation is a twofold rotation about [uvw], all

nodes in the two planes of the (hkl) family passing through

two neighbouring nodes along the [uvw] direction are restored

(exactly in the case of TLS, approximately in the case of

TLQS) because a two-dimensional mesh has at least symmetry

2. If N is odd, all the other N � 1 planes intersect the lattice

row [uvw] neither on a node nor midway between two

neighbouring nodes and therefore only one plane out of N has

all its nodes restored by the twin operation: the twin index is

N. If instead N is even, there is one plane of the same family

which intersects the lattice row midway between two neigh-

bouring nodes: the nodes on this plane are restored too. In this

case, there are two planes out of N having all their nodes

restored by the twin operation and the twin index is N/2.

When the twin operation is a rotation of higher degree

about [uvw], this simple criterion no longer applies, because in

general the rotational symmetry of the two-dimensional mesh

in the (hkl) plane no longer coincides with that of the twin

operation. The degree of restoration of lattice nodes must now

take into account the two-dimensional coincidence index �
for a plane of the family (hkl), which defines a supermesh in

LT. Moreover, such a supermesh may exist in � planes out of N,

depending on where the intersection of the [uvw] twin axis

with the plane is located. The twin index is finally given by

n ¼ N�

�
: ð2Þ

In the case of a twofold rotation, � = 1 and � = 1 or 2, which

shows that equation (2) is a generalization of Friedel’s equa-

tion (1) (remember that N = 2X, X or X/2 – see Table 2).

3. Zero-obliquity TLQS: redefinition of pseudo-
merohedry and reticular pseudo-merohedry

Donnay & Donnay (1974) introduced the categories of TLS

and TLQS essentially with the purpose of distinguishing twins

giving a diffraction pattern that shows ‘either a single orien-

tation of the reciprocal lattice or two (or more) distinct
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Table 1
Classical classification of crystal twinning.

A finer classification is given in Nespolo & Ferraris (2006). For twofold twins,
the classification in terms of obliquity and of misfit (for the definition of the
latter see x3) coincides; however, for manifold twins the latter correctly assigns
quasi-symmetry twins to pseudo-merohedry or reticular pseudo-merohedry
even when zero obliquity would put them in a wrong category.

Twin index n Obliquity ! Misfit � Revised Friedel classification

= 1 = 0 = 0 Merohedry
= 0 > 0 Pseudo-merohedry
> 0 > 0

> 1 = 0 = 0 Reticular merohedry
= 0 >0 Reticular pseudo-merohedry
>0 >0

Table 2
Number N of lattice planes of the family (hkl) between two neighbouring
nodes along the direction [uvw] as a function of the lattice type, of the
parity of the indices, and of the value X = |uh + vk + wl|; u, v, w are co-
prime integers, ditto for h, k, l.

Lattice type Condition on h, k, l Condition on u, v, w N

P None None X
C h+k odd u+v and w not both even 2X

u+v and w both even X
h+k even u+v and w not both even X

u+v and w both even X/2
B h+l odd u+w and v not both even 2X

u+w and v both even X
h+l even u+w and v not both even X

u+w and v both even X/2
A k+l odd v+w and u not both even 2X

v+w and u both even X
k+l even v+w and u not both even X

v+w and u both even X/2
I h+k+l odd u, v, w not all odd 2X

u, v, w all odd X
h+k+l even u, v, w not all odd X

u, v, w all odd X/2
F h, k, l not all odd u+v+w odd 2X

h, k, l all odd X
h, k, l not all odd u+v+w even X
h, k, l all odd X/2
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orientations having a common origin’. However, as shown in

Table 1 therein, this distinction turns out to be simply a matter

of separating zero-obliquity twins from those with non-zero

obliquity, so that nowadays TLQS is used as a synonym for

‘non-zero obliquity twinning’. This choice was somewhat

unfortunate for at least two reasons:

1. the existence of ‘two (or more) distinct orientations

having a common origin’ does not entirely rely on splitting of

diffractions; twinning by reticular merohedry normally results

in non-space-group absences which are among the strongest

criteria to suspect the presence of twinning (see, for example,

Nespolo & Ferraris, 2003, and Ferraris et al., 2004);

2. a non-zero obliquity means that LT is close to a higher

holohedry – and this is at the origin of the term twin lattice

quasi-symmetry; however, the opposite is not necessarily true,

because a twin lattice can be pseudo-symmetric without the

need for a twin operation to correspond to a non-zero obli-

quity: this is typically the case of manifold twins.

The second argument shows that the obliquity alone is not

sufficient to differentiate between TLS and TLQS in the

case of manifold twins, as was already pointed out by

Santoro (1974) and later by Grimmer & Nespolo (2006).

Santoro (1974) introduced a measure of the deviation

suffered by the twin lattice in crossing the boundary from

one individual to the other. This measure consists in six

parameters �ij which all go to zero for zero obliquity only

when the LT twin lattice is not pseudo-symmetric. For zero-

obliquity TLQS twins, which occur in manifold twins, at least

one of the six parameters introduced by Santoro does not

vanish. A different formalism, related to the study of grain

boundaries, was introduced by Bonnet & Durand (1975). They

considered two transformation matrices: a linear part, repre-

senting the rotation necessary to complete the parallelism of

two lattices starting from their misoriented alignment; and an

affine part, which deforms one lattice to match the periodicity

of the other one.

The two approaches above, despite the advantage of being

quite general, give a measure of the lattice misorientation

which is less immediate to read. Here we introduce a new

single parameter, which not only gives the misorientation of

the lattices but, differently from the other parameters intro-

duced previously, for TLQS twins is also related to the twin

index. The new parameter, which we call twin misfit �, is

defined as the distance between the first nodes along the two

shortest directions in the plane of LT (quasi-)perpendicular to

the twin axis that are quasi-restored by the twin operation.

Let uAvAwA and uBvBwB be the coordinates in LT of two

nodes quasi-restored by the twin operation. If R’ is the

rotation matrix representing in LT the crystallographic rota-

tion by an angle ’ about the twin axis, the quasi-restoration is

expressed by the equation

R’j uA vA wA i ¼ j uA0 vA0 wA0 i � j uB vB wB i;

where � means quasi-equal. The twin misfit � is then the

distance between the coordinates uA0vA0wA0 and uBvBwB

obtained as

� ¼ h�u �v �w jGj�u �v �w i1=2

�u ¼ u
A0 � u

B

�v ¼ v
A0 � v

B

�w ¼ w
A0 � v

B

ð3Þ

where G is the metric tensor of LT. For TLQS, uA0vA0wA0 are in

general irrational and can be obtained as follows. In general,

the crystallographic basis of LT is not orthogonal; let M be the

matrix transforming this crystallographic basis into an

orthogonal basis. This transformation can be done via a clas-

sical Gram–Schmidt orthogonalization. Because the coordi-

nates of a node are contravariant components, they are

transformed by the inverse matrix, M�1. If ‘cry’ and ‘or’

indicate variables expressed in the crystallographic and the

orthogonal basis respectively of LT, the transformations are as

follows:

M�1j uA vA wA icry ¼ j uA vA wA ior

R’j uA vA wA ior ¼ j uA0 vA0 wA0 ior

Mj uA0 vA0 wA0 ior ¼ j uA0 vA0 wA0 icry:

ð4Þ

The rotation matrix R’ is expressed in the orthogonal

setting. For twofold twins, the above calculation simplifies

drastically because there is a 1:1 relation between the obliquity

and the twin misfit: the latter is the basis of an isosceles

triangle whose vertex angle is !, so that � = 2p sin !, where p is

the period of the shortest direction in the primitive mesh

quasi-perpendicular to the twin axis, which forms the equal

sides of the isosceles triangle (in the case of twofold rotation

twins, all directions in this plane are quasi-restored).

Note that when the same direction may act as twin axis of

different orders, giving different twins, the obliquity cannot

differentiate these twins, whereas the twin misfit does, as will

be shown for the [013] twins in staurolite.

The twin misfit is obviously zero for TLS twins. However,

for TLQS twins the twin misfit is richer in information than the

parameters previously introduced (Santoro, 1974; Bonnet &

Durand, 1975). Suppose two compounds A and B have the

same space-group type but A has larger lattice parameters

than B. If both crystals undergo twinning according to the

same twin law, they have the same twin index and the same

obliquity, whereas the twin misfit �A is larger than �B. Because

the cell of LT, and in particular the two-dimensional mesh in

the contact plane, are also larger for A than for B, the prob-

ability of occurrence of the twin is expected to be higher for B,

all the other factors being constant. The other parameters

proposed previously cannot differentiate the two cases.

Friedel’s classification in Table 1 classifies twins by (reti-

cular) pseudo-merohedry as having ! > 0. We have seen that

for manifold twins this parameter is in general not sufficient

to fully characterize these twins: we therefore propose to

generalize the definition of twins by (reticular) pseudo-

merohedry as those twins having twin misfit � > 0.
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4. An instructive case study: the staurolite twins

Smith (1968) concluded his study on the crystal structure of

staurolite by saying that ‘staurolite remains an enigma’.

Although the structure and chemistry of staurolite are

nowadays well known, we are going to show that the inter-

pretation of its twins has been problematic up to now.

Well before a satisfactory structure solution of staurolite

was achieved, this mineral attracted the interest of miner-

alogists because of its twins. The structure of staurolite was

first solved by Náray-Szabó in 1929, who adopted the space-

group type Ccmm suggested one year before by Cardoso

(1928). This mineral is monoclinic, although its Bravais lattice

at ambient conditions is metrically orthorhombic: the correct

space group, of type C2/m, was determined by Hurst et al.

(1956). In the same year, Juurinen (1956) suggested C2221 as a

possible space-group type of staurolite but later Náray-Szabó

& Sasvári (1958) refined the structure and confirmed Hurst et

al.’s (1956) results. The chemical formula of staurolite was also

a subject of discussion for many years, as shown, for example,

by Griffen et al. (1982), Donnay & Donnay (1983) and

Alexander (1989).

Staurolite gives two penetration twins, known as the 90� or

‘Greek cross’ twin and the 60� or ‘Saint Andrews cross’ twin

(Friedel, 1904, 1922). These twins are often reported as

reflection twins on (031) and (232), respectively, but, as we are

going to see, this interpretation is not correct. A third twin,

reported by Dana (1876) and quoted by Friedel (1904) as

having [320] as twofold twin axis or (230) as twin plane, was

only found once and never confirmed later (Hurst et al., 1956).

Both cross twins are twins by reticular pseudo-merohedry

(TLQS) and can be rationalized in terms of a common lattice

that is the pseudo-cubic primitive sublattice ( -cP; hereafter

 followed by the standard lattice-type symbol is used to

indicate pseudo-symmetry) obtained from the C-centred cell

known as ‘Mallard’s pseudo-cube’ (Friedel, 1904). The latter is

obtained from Lind by the following transformation:

h a b c jLind

0 0 3

1 �11 0

3 3 0

2
4

3
5 ¼ h a b c jMallard0s pseudo-cube:

ð5Þ

The supercell corresponding to Mallard’s pseudo-cube has

multiplicity 36 and is C-centred: this centring is not compatible

with the cubic symmetry and therefore the lattice based on

Mallard’s pseudo cube is only pseudo-tetragonal ( -tC),

although it is metrically pseudo-cubic. Starting from the

staurolite lattice parameters used by Hahn & Klapper (2003),

a = 7.871, b = 16.620, c = 5.656 Å, � = 90�, Mallard’s pseudo-

cube parameters are a = 23.752, b = 23.752, c = 23.613 Å, � =

90.00, � = 90.00, � = 88.81�. The lattice based on Mallard’s

pseudo-cube is therefore mC but  -tC and metrically pseudo-

cubic. Both twins can be obtained by using a symmetry

element of the  -cP sublattice as twin element, although for

the Greek cross twin a smaller pseudo-tetragonal cell is

sufficient to explain the twinning. As we are going to show,

despite a number of studies on staurolite twins, some impor-

tant mistakes still remain even in the most recent literature. In

the following examples, when describing the choice of the

axial setting to compute the twin misfit �, we will always take

the twin axis as the c axis of LT or of the orthogonal reference

obtained from LT by the orthogonalization process.

4.1. Greek cross twin

The 90� twin is easier to explain: LT is the pseudo-tetragonal

sublattice obtained from Mallard’s pseudo-cube by taking 1/3

of its c parameter, which thus coincides with the a parameter

of the individual; the cell parameters of LT are obtained by the

transformation

h a b c jLind

0 0 1

1 �11 0

3 3 0

2
4

3
5 ¼ h a b c jLT

: ð6Þ

The resulting cell of LT is  -tC and has multiplicity 12; the

lattice parameters are a = 23.752, b = 23.752, c = 5.656 Å, � =

90.00, � = 90.00, � = 88.81�. The twin index, 6, corresponds to

the value of the determinant of the transformation matrix

because the two cells have the same multiplicity (both are

C-centred). The setting of LT is easily transformed to the

conventional primitive  -tP cell, the transformation from the

conventional cell of Lind being
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Figure 1
The pseudo-tetragonal C-centred (red) and the corresponding primitive
(green) cell of the twin lattice for the Greek cross twin of staurolite. Red
nodes define the cell of the twin lattice and are restored by the twin
operations. Blue nodes are internal to the  -tC cell, black nodes external
to it. a, b, c are the basis vectors of the individual, a0, b0, c0 those of the
 -tC cell of the twin, a0 0, b0 0, c0 0 those of the  -tP cell of the twin. The cell
of Lind (black) is shown on the negative side of b for the sake of clarity.
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h a b c jLind

0 0 1

1 0 0

0 3 0

2
4

3
5 ¼ h a b c j -tP: ð7Þ

Hurst et al. (1956) erroneously assigned twin index 3 instead of

6 to this twin. This error probably came from the fact that the

transformation matrix from the mC cell, metrically oC (�-oC

hereafter), to the  -tP cell has determinant 3: the two cells

however do not have the same multiplicity. The transforma-

tion matrix from �-oC to  -tC (same multiplicity) has deter-

minant 6, which coincides with the twin index.

The ratio of the point groups of the holohedries corre-

sponding to LT and Lind is 16/8 = 2 (the lattice of staurolite is

actually orthorhombic) and the twin is described by the

dichromatic twin point group 40/m2/m20/m0 (Curien & Le

Corre, 1958; Nespolo, 2004). The coset decomposition of the

twin point group with respect to the point group of the indi-

vidual gives two cosets, the first being the point group mmm of

Lind (elements indexed in the axial setting of the individual):

40=m2=m20=m0

¼ f1; 2½010�; �11;m½010�; 2½001�; 2½100�;m½001�;m½100�g
[ f4þ½100�; 2½0�113�;m½0�113�; �44

þ
½100�; 4�

½100�; 2½013�;m½013�; �44
�
½100�g:

ð8Þ
When doing a coset decomposition of a twin point group

with respect to the point group of the individual, each coset

represents a twin law and each operation in a coset is a

possible twin operation. The Greek cross twin is obtainable by

only one twin law. In the case of TLS twinning, all the

operations in a coset are equivalent under the symmetry

operations of the individual: any of them can be taken to

represent the twin law, and it is then called coset representative.

In the old textbooks, the coset representative was taken as

(032) referred to the old morphological c parameter, which is

twice the structural parameter. After correction of the c

parameter, the coset representative was also amended to

(031). In both cases, the twin was described as a reflection

twin, despite several pieces of evidence since Friedel (1920)

that staurolite twins are actually rotation twins. Furthermore,

in our case LT is only pseudo-tetragonal and twinning is thus of

TLQS type: the eight operations in each coset in equation (8)

are only approximately equivalent; besides, each pair of twin

operations related by the inversion centre of the crystal form a

pair of non-equivalent corresponding twins (Friedel, 1926),

also known as reciprocal twins (Mügge, 1898).

The above analysis can be found also in Hahn & Klapper

(2003), which is however affected by a problem in the calcu-

lation of the twin index, resulting in an inconsistent classifi-

cation of the twin operations. Four of the twin operations in

the coset are fourfold (direct or inverse) rotations about the

[100] direction, which is perpendicular to the (100) lattice

plane. The obliquity is zero but this is clearly a case of TLQS

twinning, because LT is only pseudo-tetragonal; in fact, a = b =

23.752 Å but � = 88.81� [a similar case of twinning in leucite

was described by Grimmer & Nespolo (2006)]. If one simply

applies Friedel’s formula to these operations, one would get

twin index 1, whereas the same formula applied to the other

four operations gives the correct value of 6. Evidently, two

operations in the same coset cannot correspond to different

twin indices because they would no longer be equivalent

under the action of the subgroup in terms of which the group

of LT has been decomposed. Nevertheless, Table 3.3.9.1 in

Hahn & Klapper (2003) divides the eight possible twin

operations into two groups, one containing the fourfold

operations and corresponding to a ‘twin index 1’, the other

corresponding to twofold operations and to twin index 6. Fig. 1

shows a portion of Lind, where the  -tC (red) and  -tP (green)

cells have been marked. Red nodes are restored by the twin

operation (they are the nodes at the corners of the cell of LT

and, for the case of the  -tC cell, at the centre of the C face);

blue nodes are internal to the  -tC cell of LT but not restored

by the twin operations; black nodes are external to the  -tC

cell of LT. A rapid glance at the figure shows that the  -tC cell

contains 12 nodes, of which two are restored (red ones): the

twin index is 6, as expected. The  -tP cell of LT contains red

nodes only at the corners, namely one out of six, giving once

again twin index 6. If we now look at the result of a fourfold

rotation about [100] of the individual (that is, about [001] of

the twin), we see that N = 2X = 2 (Table 2), one node (the red

one) out of three is restored by the twin operation for the

lattice planes of the (100) family passing through a lattice node

on the [100] direction (thus � = 3) and none for the other

planes of the same family, i.e. the partial restoration is realized

for one plane out of N = 2, so that � = 1. Equation (2) gives the

twin index: 3 � 2/1 = 6, as expected. The obliquity is ! = 0�

despite the TLQS nature of this twin. The twin operation does

not bring the 100 node of the twin lattice to coincide exactly

with the 010 node but slightly away from it because of the

88.81� angle between the [100]LT
and the [010]LT

directions. The

distance between the two nodes, which represents the twin

misfit, is � = 23.752 sin (90 � 88.81) = 0.493 Å.

Hurst et al. (1956) gave three possible twin operations in the

Greek cross twin: 4[100], 2[013] and (031) = m[013]. The three

operations above are also those given by Friedel (1922) once

the correct lattice parameters are chosen (Donnay & Donnay,

1983). Friedel (1922) chose as twin operation 4[100], not

because of a ‘lower twin index’, as suggested by Hahn &

Klapper (2003) but because, despite the scarcity of samples, he

could measure the angle between the faces g1 – corresponding

to the (010) faces in the Haüy–Lévy notation – and found that

the best accord was for the values computed for this twin

operation. Hurst et al. (1956) performed an X-ray precession

study on three Greek cross twins and found that in two cases

Friedel’s choice was correct, while in the third case the twin

operation was 2[013]: this third case corresponds to ! = 1.19�.

The shortest lattice direction in the (031) plane, quasi-

perpendicular to [013], is the a axis of Lind but this direction is

exactly restored by the twin operation: in fact, �(Lind) = 90�,

which implies that also �(LT) = 90�. The second shortest

direction in the (031) plane is [0�113], p = 23.752 Å and the

obliquity is 1.19�. It follows that � = 2 � 23.752 sin (1.19) =

0.987 Å. All the three samples investigated are rotation twins

and not reflection twins: Hurst et al. (1956) pointed out that a
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reflection twin cannot be a penetration twin because the

composition surface cannot be plane.

Because the structure of staurolite is actually monoclinic,

further twinning by metric merohedry (Nespolo & Ferraris,

2000) is also possible, which corresponds to the dichromatic

point group 20/m02/m20/m0, with coset decomposition

20=m02=m20=m0 ¼ f1; 2½010�; �11;m½010�g [ f2½001�; 2½100�;m½001�;m½100�g:

Being a twin by (metric) merohedry, this one could coexist

with the cross twin without being detected by morphological

analysis. The geometry of the diffraction pattern would not

reveal its presence either, unless significant deviation of the �
angle from 90� exists. To our knowledge, this additional

twinning has not been confirmed so far.

4.2. Saint Andrews cross twin

For the Saint Andrews cross twin, LT is the  -cP sublattice

of the  -tC lattice defined by Mallard’s pseudo-cube. In fact,

the latter is metrically pseudo-cubic but the C-centring is not

compatible with a cubic (pseudo-)symmetry. Hahn & Klapper

(2003, p. 424) stated that, because of this centring, ‘the 60�

cross cannot be explained by the lattice construction of the

pseudo-cube’. Actually, this twin is explained by taking the

 -cP sublattice of Mallard’s pseudo-cube obtained by ignoring

the C-centring vector. In dealing with twinning, to take a

sublattice means that the nodes being neglected are not

restored by the twin operation. The twin laws are found by

decomposing the cubic holohedry (pseudo-symmetry of the

twin lattice of the Saint Andrews cross twin) in terms of the

tetragonal holohedry (pseudo-symmetry of the twin lattice of

the Greek cross twin). The ratio of the order of the point

groups corresponding to the cubic and the tetragonal holo-

hedries is 48/16 = 3 and there are thus two possible twin laws

(the third coset being the tetragonal holohedry), each corre-

sponding to 16 different operations that

would be strictly equivalent in the case

of TLS, whereas they are only approxi-

mately equivalent in TLQS.

The cell of LT for the Saint Andrews

cross twin can be easily obtained from

the  -tC (red) cell in Fig. 1, by taking

three times the period along the mono-

clinic a axis (the c axis of LT) and by

drawing as blue the node at the centre of

the C face. The coset decomposition is

given in Table 3 in terms of both the

�-oC cell of Lind and the  -cP cell of LT,

to facilitate the comparison. The twin

index is in all cases 12, but in the litera-

ture we find different values; we shall

briefly explain the origin of these

mistakes.

The operations in Table 3 are the same

as those given by Hurst et al. (1956), who

did not classify them in terms of twin

laws. Apart from some indexing differ-

ence because at those times the cell of staurolite was given

with twice the correct c parameter, five of these operations

were given also by Friedel (1922), namely: 3[102], 3[320], 2[313],

(231) and 4[013]. When indexed with respect to the axial setting

of  -cP, these become, respectively: 3[111], 3[1�11�11], 2[101], (101)

and 4[100]. The first four operations belong to the first coset, the

last one to the second coset. Hurst et al. (1956) confirmed 3[102]

in one case and 2[313] in two other cases. They stated that the

pseudo-cubic cell has multiplicity 18, which corresponds to the

determinant of the transformation matrix in equation (5).

However, the cell of the individual is C-centred and thus the

cell of LT, which is 18 times larger, has multiplicity 36. Because

of this mistake, Hurst et al. (1956) assigned twin index 6

instead of 12 to this twin.

Hahn & Klapper (2003) (Table 3.3.9.1) assigned four

different values to the twin index of the Saint Andrews cross

twin: 3 for 3[102], 9 for 3[320], 6 for 4[013], and 12 for 2[313] and

(231).1 These inconsistencies come once again from the direct

application of Friedel’s formula (1): in fact, the correct value

of 12 is found when this formula is applied to binary opera-

tions, like 2[313] and (231), which are mutually quasi-perpen-

dicular. In the other cases, the calculation should be

performed with the formula in equation (2).

(i) The direction [102] is quasi-perpendicular to (101), so

that N = 2X = 6 (Table 2). The directions defining the primitive

two-dimensional mesh in the (101) plane are [010] and [10�11],

90� apart, whose parameters are 16.620 and 9.619 Å, namely

a ’ b � 31/2, the classical orthohexagonal relation. In this

plane, we can therefore find a pseudo-hexagonal sublattice

with coincidence index � = 2: every second node is restored by

the twin operation. Had the mesh been centred, the whole
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Table 3
Coset decomposition of m�33m in terms of 4/mmm; �-oC: axial setting of the individual (metrically
oC);  -cP: axial setting of the twin (pseudo-cubic).

4/mmm First coset Second coset

�-oC  -cP �-oC  -cP �-oC  -cP

1 1 4þ½0�113� 4þ½010� 4þ½013� 4þ½100�
2[010] 2[1�110] 3þ½�3320� 3þ½1�11�11� 3�½�3320� 3�½1�11�11�
�11 �11 �44þ½0�113� �44þ½010� �44þ½013� �44þ½100�
m[010] m[1�110]

�33þ½�3320� �33þ½1�11�11� �33�½�3320� �33�½1�11�11�
2[001] 2[110] 3þ½10�22� 3þ½�11�111� 3�½102� 3�½111�
2[100] 2[001] 2[313] 2[101] 2[31�33] 2[01�11]

m[001] m[110]
�33þ½10�22� �33þ½�11�111� �33�½102� �33�½111�

m[100] m[001] m[313] m[101] m[31�33] m[01�11]

4þ½100� 4þ½001� 3þ½102� 3þ½111� 3�½320� 3�½�111�11�
4�½100� 4�½001� 3þ½320� 3þ½�111�11� 3�½10�22� 3�½�11�111�
�44þ½100� �44þ½001� �33þ½102� �33þ½111� �33�½320� �33�½�111�11�
�44�½100� �44�½001� �33þ½320� �33þ½�111�11� �33�½10�22� �33�½�11�111�
2[013] 2[100] 2[�3313] 2[�1101] 4�½013� 4�½100�
m[013] m[100] m[�3313] m[�1101]

�44�½013� �44�½100�
2[0�113] 2[010] 4�½0�113� 4�½010� 2[3�113] 2[011]

m½0�113� m½010� �44�½0�113� �44�½010� m½3�113� m½011�

1 Hahn & Klapper included also (031) among the twin elements of the Saint
Andrews twin. This is however a twin plane for the Greek cross twin and a
symmetry plane for the  -tP sublattice.
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two-dimensional lattice would be pseudo-hexagonal [other

examples of the same kind are in aragonite, NH4LiSO4 and

compounds of the K2SO4 type, see Hahn & Klapper (2003,

p. 424)]. Only one plane of the family (101) behaves in the

same way when a threefold rotation is applied about the [102]

direction, so that � = 1. The twin index is therefore 6 � 2/1 =

12, as expected. A geometrical interpretation is easily

obtained by taking three pseudo-tetragonal cells in Fig. 1: the

first node along the [102] direction on the corner of Mallard’s

pseudo-cube is 306. Besides the nodes at the corners, two

other nodes on the direction [102], namely 102 and 204, are

also restored, leading to the twin index of 36/3 = 12.

(ii) The direction [320] is quasi-perpendicular to (130).

Hahn & Klapper (2003) attributed twin index 9 to the twin

produced by a threefold rotation about the [320] direction. As

shown in Fig. 2, nine is the number N = X (Table 2) of lattice

planes of the family (130) from the origin to the first node

along the direction [320]: it would coincide with the twin index

only if the twin operation were a twofold rotation. Fig. 3 shows

that in the (130) plane there is a pseudo-hexagonal mesh of

multiplicity 12 and 12 is also the coincidence index �: the

nodes defining this mesh (red in Fig. 3) are quasi-restored by

the twin operation, the others are not. One can show that the

same holds for all the nine planes: in Fig. 3, the lattice rows

parallel to the c axis can be divided in two types which alter-

nate regularly: one has one node out of six (quasi-)restored by

the twin operation, the other has no node restored at all, which

eventually gives � = 12. The same holds for the next plane: the

row [10l] has (quasi-)restored the nodes with l = 2(mod 6), the

row [4�11l] has (quasi-)restored the nodes with l = 5(mod 6), the

lattice row passing through the node at 2.5a and �0.5b has

none of its nodes restored. This finally leads to � = 9, so that

the twin index is 9 � 12/9 = 12, as expected.

(iii) The direction [013] is the same as that responsible for

one of the Greek cross twins when it acts as twofold axis; when

instead it acts as a fourfold axis, it gives one of the Saint

Andrews cross twins. Hahn & Klapper (2003) attributed twin
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Figure 2
The (001) plane of staurolite with the projection of the cell of the twin
lattice corresponding to the [320]/(130) pair marked in bold. [3�110] and
[320] are two of the directions defining the cell of LT, the third one being
[001], the direction of the projection. The red dotted rows are the trace of
the planes of the family (130) passing within the cell of LT: there are nine
planes of this family from the origin to the first node along the [320]
direction.

Figure 3
The (130) plane of staurolite with its pseudo-hexagonal mesh of
multiplicity 12 shown in red. The axes of this mesh are along the [�3313]
and [3�113] directions of staurolite (33.492 Å), the inter-axial angle being
119.12�.

Figure 4
(100) projection of the staurolite lattice showing in red the directions
[013] and [0�113] defining the cell of the twin lattice. Dotted red lines are
the traces of the 11 planes of the family (031) between the origin and the
first node along the [013] direction. The numbers in colour are the u
coordinate, expressed in the axial setting of the individual, of the lattice
nodes inside the cell of the twin lattice restored by the operations 4þ½013�
(green), 4�½013� (blue) and 2[013] (red).
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index 6 instead of 12: the result is correct for the Greek cross

twin, not for the Saint Andrews cross twin. The number of

lattice planes of the family (031) between the origin and the

first node along the [013] direction is N = 2X = 12 – see Table 2

and Fig. 4. The coincidence index of the (031) plane for a

fourfold rotation is � = 3, but only three planes out of the

twelve are partially restored by the twin operation (� = 3):

besides the plane at the origin, also the plane containing nodes

002 and 004 is restored (indexing with respect to the axial

setting of Lind). In fact, a fourfold rotation about [013]

restores, besides the node at the origin, the nodes 202 and 104

(positive rotation) or 102 and 204 (negative rotation): these

are the lattice nodes that, after application of the twin

operation, have their uvw indices transformed to integer w

and integer or half-integer u and v. The twin index is thus

12 � 3/3 = 12, as expected.

It is particularly instructive to compare the measure of the

pseudo-symmetry of LT in the cases above by means of the

obliquity ! and of the twin misfit �.
(i) For 3[102], the lattice plane quasi-perpendicular to the

twin axis is (101) and the pseudo-hexagonal mesh therein is

defined by the directions [�2202] and [11�11] forming an angle of

120.25�. The parameters of LTare aT = [11�11]Lind
(19.240 Å), bT =

[�2202]Lind
(19.385 Å), cT = [102]Lind

(13.781 Å), �T = 89.13, �T =

90.44, �T = 120.25�. The obliquity is ! = 1.49� and the twin

misfit is � = 2.548 Å.

(ii) For 3[320], the lattice plane quasi-perpendicular to the

twin axis is (101) and the pseudo-hexagonal mesh therein is

defined by the directions [�3313] and [3�113]. The parameters of LT

are aT = [�3313]Lind
(33.492 Å), bT = [3�113]Lind

(33.492 Å), cT =

[320]Lind
(40.773 Å), �T = 89.79, �T = 90.22, �T = 119.12�. The

obliquity is ! = 0.37� and the twin misfit is � = 4.331 Å.

(iii) For 4[013], the lattice plane quasi-perpendicular to the

twin axis is (031) and the pseudo-tetragonal mesh therein is

defined by the directions [013] and [0�113]. The parameters of LT

are aT = 3 � [100]Lind
(23.613 Å), bT = [013]Lind

(23.752 Å), cT =

[0�113]Lind
(23.752 Å), �T = 88.81, �T = 90, �T = 90�. The obliquity

is ! = 1.19� and the twin misfit is � = 0.493 Å.

(iv) For 2[313], the lattice plane quasi-perpendicular to the

twin axis is (231). The shortest direction in this plane is [10�22]

(13.781 Å), the obliquity is 1.30� and the twin misfit is � =

2 � 13.781 sin (1.30) = 0.625 Å.

These four twins correspond to similar obliquities but quite

different twin misfits. Hurst et al. (1956) have confirmed the

two twins corresponding to intermediate misfits (0.625 and

2.548 Å). We would expect to find the one with the smallest

misfit (0.493 Å) but probably not the last one, 3[320], because of

the very large twin misfit.

It should also be emphasized, as mentioned above, that the

twin misfit depends on the type of twin operation about the

same direction of Lind. This is the case for [013], which acts as a

twofold twin axis (Greek cross twin) and possibly also as a

fourfold twin axis (Saint Andrew’s twin): in the latter, the twin

misfit (0.493 Å) is half of that of the former (0.987 Å).

The twin operations giving birth to the Saint Andrews cross

twins are those belonging to the pseudo-cubic sublattice but

not to the pseudo-tetragonal sublattice that corresponds to the

Greek cross twin. If we ignore the small deviation from the

exact cubic metric of Mallard’s pseudo-cube, the Saint

Andrew’s twins correspond to the trichromatic twin point

group

4ð2;1Þ

m
�33ð3Þ 2ð2;1Þ

mð2;1Þ

� �ð3Þ

(Nespolo, 2004). The coset decomposition in Table 3 corre-

sponds to the decomposition of this twin point group in terms

of the dichromatic twin point group of the Greek cross twin.

5. Conclusions

The investigation of the reticular aspects of twins, despite its

long history, is far from having said the last word. In the

present study, we have shown that the cases of manifold twins

were incorrectly treated both in terms of classification (zero-

obliquity twins which nevertheless are TLQS twins) and of

calculation of the twin index. The twin misfit is a more

meaningful parameter to estimate the occurrence probability

of a twin with respect to the twin obliquity, even if it is slightly

more cumbersome to calculate, especially for manifold twins.
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