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Abstract. The reticular theory of twinning is extended to
include the contribution of different, coexisting sublattices
that consist of quasi-restored nodes (cooperative sublat-
tices) and are characterized by a specific superposition in-
dex. The overall degree of quasi-restoration of the twin
lattice is a function of the superposition index of the coop-
erative sublattices, and is expressed by a new parameter,
called effective twin index, which is the generalization of
the classical twin index. Twins where the effective twin
index is lower than the classical twin index are termed
hybrid twins. Several twins (e.g. twins of pyrite and of
forsterite) that could not so far be explained by the reticu-
lar theory because of their too high twin index are inter-
preted as hybrid twins. The effect of hybrid twins on dif-
fraction patterns is discussed.

Introduction

An oriented association of natural crystals of the same
chemical and crystallographic species in which the indivi-
duals are related by an operation not belonging to their
vector point group can be called a “twin” at full title if it
occurs “frequently” (Hahn and Klapper, 2003). The reticu-
lar theory of twinning, as developed by the so-called
“French school” (Bravais, 1851; Mallard, 1885; Friedel,
1904, 1926) explains the occurrence probability of twins
in terms of overlap of the lattices related by the twin op-
eration: the lower are the twin index and the twin obli-
quity, the higher is the probability that that twin will form.
Friedel (1923) stated that the obliquity plays however a
secondary role with respect to the twin index: in other
words, a relatively high obliquity is less unfavourable than
a relatively high index. This observation, which was often

* Correspondence author
(e-mail: massimo.nespolo@lcm3b.uhp-nancy.fr)

overlooked, is actually rather important in explaining some
high-index twins, as we are going to show in this article.

Friedel (1904) introduced as ‘“Mallard’s law” the role
of pseudo-symmetry elements as twin elements’. Nowa-
days, with “Mallard’s law” it is often, but improperly, in-
dicated the low probability of occurrence of high-index,
high-obliquity twins (see. e.g., Le Page, 2002; Grimmer
and Kunze, 2004), where the limit values were set again
by Friedel (1904, 1923, 1926) at twin index 6 and obli-
quity 6°. As a matter of fact, Mallard’s analysis of
twinned crystals (Mallard, 1885) considered only twins by
(pseudo) merohedry: he could not have defined a criterion
based on twin index and obliquity, two parameters that
were introduced only after Mallard’s passing away in
1894 (twin index in Friedel, 1904, p.218; obliquity in
Friedel, 1920). Nevertheless, to refer to Mallard when dis-
cussing the occurrence probability of twins in term of
their lattice superposition has nowadays become common.
Thus, Grimmer and Nespolo (2005), after Th. Hahn (per-
sonal communication), suggest rephrasing as “Mallard’s
criterion” the latter empirical observation, to distinguish it
from the original “Mallard’s law” established by Friedel
and identifying twin elements with direct lattice pseudo-
symmetry elements.

For the sake of brevity, in the following we call “Frie-
delian twins” or “non-Friedelian twins” respectively those
twins that obey or violate the criterion of twin index and
obliquity not higher than 6 and 6°, respectively. These
limits are purely empirical and suffer several exceptions,
even at the borderline (ex. the index 7 twin in the Cornish
law and Pierre-Levée law of S-quartz twins: Drugman,
1927). Some crystal associations with much higher index
have been described as plesiotwins (Nespolo et al,
1999b). In these latter associations, the coalescence of

' “Les plans et axes d’ordre n de pseudo-symétrie du réseau sim-
ple (plans réticulaires et rangées) peuvent jouer le réle de plans de
macle et d’axes de macle d’ordre n” (Friedel, 1904, p. 157). Later
formulation: “Quand le réseau-période a des plans ou des axes de
pseudo-symétrie, ces plans (réticulaires) et axes (rangées) peuvent
étre plans et axes de macle” (Friedel, 1926, p. 436).
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Table 1. Some mineralogical examples of non-Friedelian twins, and their interpretation as hybrid twins when possible. Twin laws after Palache et al.
(1952). The cell parameters used in the computation of twin index and obliquity are taken from the Mineralogy Database (http://webmineral.com/).

Compound Space-group  First component  Second component  Third component Hybrid twin  Effective twin
type (index/obliquity)  (index/obliquity) (index/obliquity) index

Pyrite Pa3 (052)/[052] (052)/[021] (021)/[052] yes 32
FeS, (29/0°) (6/5.5°) (6/5.5°)
Galena Fm3m (025)/[025] (025)/[012] (012)/[025] yes 5.8
PbS (29/0°) (12/4.8°) (12/4.8°)
Forsterite Pbnm (012)/[016] (012)/[029] (023)/[016] yes 43
Mg,SiOq4 (13/0.5°) (10/4.4°) (10/5.5°)
Euxenite-(Y) Pcan (201)/[704] (201)/[201] - yes 3.6
(Y,Ca,Ce)(Nb,Ta,Ti),0¢ (9/0°) (5/3.0)
Enargite Pnm2, (201)/[704] (201)/[201] — yes 3.6
CuzAsSy (9/0°) (5/3.0°)
Tantalite Pcan (201)/[11 0 7] (201)/[201] - yes 4.8
FeTayO¢ (29/0°) (5/5.5°)
Chalcostibite Pnam (104) [1 0 10] (104)/[001] (001)/[1 0 10] yes 1.4
CuSbS; (41/0°) (2/9°) (5/9°)
Maucherite P4 32,2 (106)/[302] (106)/[201] (105)/[302] yes 3.0
NijAsg (15/2.6°) (4/4.3°) (13/7.1°)

(203)/[13 0 2] (203)/[5 0 1] — yes 8.0

(16/0.7°) (13/7.1°)
Galena Fm3m (114)/[114] no —
PbS 9/0°)
Pyrargyrite R3c (104)/[2 0 13] — — no -
Ag3SbS; (27/0.1°)
Staurolite C2/m (231)/[313] — — no —
(Fe,Mg)zAlg(Si,Al)4020 (0,0H)4 (ﬁ = 900) (12/] .30)

post-grown crystals and the surface effect are supposed to
play an important role, so that their formation mechanism
is different from those typical of growth twins (Nespolo
and Ferraris, 2004a). Nevertheless, real non-Friedelian
twins do exist and are known since long ago; for example
they are not rare in some common minerals studied in de-
tails mainly on the basis of their morphology (see Ta-
ble 1). For these high-index twins the classical reticular
explanation is hardly satisfying and needs to be somehow
extended to include the contribution of different but clo-
sely related sublattices. Non-Friedelian twins where this
phenomenon is observed are here defined hybrid twins.

Twins law, twin index and twin obliquity

Pairs of individuals in a twin are related by a twin opera-
tion. In general, more than one such operation may exist;
when the common symmetry of the individuals (intersec-
tion group of the oriented point groups) is higher than 1,
these operations are either equivalent or quasi-equivalent
under the action of the symmetry elements of the indivi-
dual. A set of (quasi) equivalent twin operations forms a
twin law; this set of operations constitutes a coset of the
twin point group with respect to the individual point
group (Hahn and Klapper, 2003). A twin operation is per-
formed about a twin element, which is a symmetry ele-
ment for the twin lattice but not for the individual crystal.
The twin lattice, L, either coincides with the individual
lattice, L, or is a sublattice of it. The cell of the twin
lattice is defined (i) by the period of the row corresponding
to the twin axis [uvw] and by the conventional mesh of the

net (hkl) that is (quasi) normal to it; or (ii) by the conven-
tional mesh of the net corresponding to the twin plane (hkl)
and by the period of the lattice row [uvw] that is (quasi)
normal to it. The ratio of the volumes of the cells of Ly and
Ly, scaled by the their multiplicities, is the twin index men-
tioned above. It corresponds to the ratio of the number of
lattice nodes in the cell of the Lt to the number of lattice
nodes restored by the twin operation. From the indices of
the twin element — [uvw] or (hkl) — the twin index can be
obtained as follows (Friedel, 1926; Donnay and Donnay,
1959). Given S = |hv + kw + Iw|, the twin index n can take
the values S, $72, S/4 depending on the type of centring of
L;, and on the parities of &, k, I, u, v, w and S (Table 2).
When Ly coincides with L, the twin index is 1.

The coincidence between Lt and L, or a sublattice of
the latter, may be approximate. Because a lattice is always
holohedral, to a (pseudo) mitror plane always corresponds a
(pseudo) symmetry axis (quasi) normal to it, and vice versa.
The obliquity @ can be defined either as the angle between
the lattice plane quasi normal to the twin axis and the plane
(in general not rational in the direct space) perpendicular to
it (rotation twins); or as the angle between the lattice row
quasi perpendicular to the twin plane and the direction (in
general not rational in the direct space) perpendicular to it
(reflection twins). All twins of cubic crystals have zero ob-
liquity: in fact, in a cubic crystal the lattice row [hkl] and
the lattice plane (hkl) are mutually perpendicular.

This classification in terms of twin index and obliquity
leads to the well-known four classical categories of twins
by [reticular] (pseudo) merohedry (Friedel, 1926).

A finer classification has been recently introduced
(Nespolo and Ferraris, 2000, 2004b) to take into account
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Table 2. Computation of the twin index as a

function of S = Ihv + kv -+ Ml and of the lat-  Lattice  Condition on Condition on Condition n
tice centring (see Friedel, 1926; Donnay and ~ centring 7, &, u, v w on §
Donnay, 1959). P none None S odd n=3_5
S even n=._S/2
C h+ k odd None none n==_§
h + k even u + v and w not both even S odd n==_§
S even n=._S/2
u + v and w both even S/2 odd n=._S/2
S/2 even n=_S/4
B h+1odd None none n==_5
h+ 1l even u + w and v not both even S odd n==_§
S even n==_5/2
u + w and v both even S/2 odd n==_5/2
S/2 even n=_5/4
A k + [ odd None none n==_,
k + [ even v+ w and u not both even S odd n=.S
S even n==_5/2
v+ w and u both even S/2 odd n=._S/2
S/2 even n=_5/4
1 h+k-+1odd None none n==_§
h+k+ 1 even u, v, w not all odd S odd n==_S
S even n=._S/2
u, v, w all odd S/2 odd n=3_S12
S/4 even n=_S/4
F none u+v+wodd none n==_§
h, k, [ not all odd u+ v+ weven S odd n=3_S
S even n=._S/2
h, k, [ all odd u+ v+ weven S/2 odd n==_S12
S/4 even n=_S/4

special cases of merohedry (syngonic merohedry, metric
merohedry) and the point isosymmetry of lattice vs. sub-
lattice differently oriented (reticular polyholohedry). Re-
cent reviews on twins can be found in Hahn and Klapper
(2003) and Ferraris et al. (2004); a critical analysis of the
use of the concept of “twinning” as structure-building and
crystal-association mechanism is presented by Nespolo
et al. (2004).

Hybrid twins and effective twin index

Several non-Friedelian twins — reported more than once,
and thus not just occasional associations — are known that
correspond to a surprisingly high twin index (some exam-
ples are given in Table 1). The determination of the twin ele-
ment was obtained either by morphological studies — it is
the case of old mineralogical examples — or by diffraction
methods. Some of these unusual twins can actually be ex-
plained by extending the classical reticular theory of twins.
Let (hkl) and [uvw] be a pair of mutually (quasi) per-
pendicular (pseudo) symmetry elements for the lattice of
the individual, or a sublattice of it. When one of these
elements is not a symmetry element for the motif, it may
act as twin element (twin plane, twin axis). When neither
of them is a symmetry element for the motif, both can act
as twin elements: if the perpendicularity is only approxi-

mate, the result is a pair of twins that are non-equivalent
even in centrosymmetric crystals: they are known as cor-
responding twins (Friedel, 1926).

The pair (hkl)/[uvw] defines the cell of the twin lat-
tice, Ly, the twin index n and the twin obliquity w. The
corresponding twin operation restores one node out of n
of Lj, and the Bravais cell of Lt is defined by these re-
stored nodes. The other n — 1 nodes are not restored: this
means that corresponding vectors from the origin in the
lattices L; and L; are separated by an angle ¢. The mini-
mal value of this angular separation decreases however
with the increase of the twin index and for relatively high
values of n it may happen that a second subset of lattice
nodes is approximately restored. When this second subset
consists of a fraction of lattice nodes significantly higher
than 1/n and the corresponding angular separation ¢ is
small (namely close to the Friedelian limit for the obli-
quity), it should be reasonably taken into account as con-
current with the first subset in establishing Friedelian con-
ditions of twinning. This second subset of nodes defines
another sublattice L, based on a smaller cell; for reflec-
tion twins this sublattice is based on the same twin plane
(hkl) but on an alternative lattice row [uavawa]; for rota-
tion twins it is instead based on the same twin axis [uvw]
and on an alternative lattice plane (hakala). The cell of
L defines a superposition index, na, smaller than the
twin index n, and an obliquity wa, related to ¢, that is
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non-zero but still within the Friedelian limits. The result
is a hybrid between reticular merohedry and reticular
pseudo-merohedry, and for this reason it is here defined
as hybrid twin. When the original twin law corresponds
to a non-zero obliquity w, the hybrid twin consists of two
reticular pseudo-merohedries.

By extending the above arguments, one could foresee
cases in which N sublattices contribute to the hybrid twin.
Let the first sublattice be the one with minimal obliquity
(Wmin = 1) but high index n; and the N-th sublattice the
one with minimal index ny = ny,, but high obliquity; the
other sublattices have intermediate values of both the in-
dex and the obliquity:

n>ny>n3 >...>ny,
<y <wz<...<wpy.

However, for ny, n3 ... ny_; to be within Friedelian limits
n; should be rather high and ny fairly low: these two con-
ditions are contradictory, because in such a case the twin
would be Friedelian, with twin index ny. As a conse-
quence, in the analysis of a hybrid twin we consider the
twin as deriving from the coexistence of up to three sub-
lattices: 1) the lowest-obliquity sublattice — the limit on
the twin index being significantly relaxed with respect to
the Friedelian limit; 2) the lowest-index non-zero obliquity
sublattice based on the lowest-obliquity twin plane; and 3)
the lowest-index non-zero obliquity sublattice based on the
lowest-obliquity twin axis. The cells of the three lattices
are described as follows:

1. (hkD/Tuvw], © > 0, n

2. (hkD)/Tupvawal, wa > w, np < n

3. (hgkglg)/[uvw], wg > w, ng < n.

In cubic crystals @ =0, us = hg, va = kg and wa = Ig
and thus wa = wg > 0 and na = ng.

When in a non-Friedelian twin at least one between np
and ng is close to the Friedelian limit, the fraction of
nodes of Lj that is restored within the Friedelian limit on
the obliquity is a function of up to three twin indices: n,
na and ng. In fact, if Ly is the twin lattice defined, as
usual, by the nodes belonging to the (hkl)/[uvw] cell, L
and Ly are the corresponding lattices defined by the nodes
of the (hkl)/[uavawa] and (hgkglg)/[uvw] cells respec-
tively: 1/n, 1/np and 1/ng are the fractions of nodes re-
stored by the twin operation within the limits of the obli-
quities w, wa and wg respectively. The total number of
nodes quasi-restored in the cell of Ly is thus a function of
the number of nodes of L, and Ly contained in the cell
of L. The cell of Lt contains St = S/n nodes of Lr,
Sa = int (S/np) nodes of L and Sg = int (S/ng) nodes of
Lg, where “int (x)” is the integer part of x. We now intro-
duce a new index ng = S/(St + Sa + Sg) which, in gener-
al, is no longer integer, and call it effective twin index. For
a Friedelian twin, ng reduces to the classical (integer) twin
index n, in the same way the effective coordination num-
ber reduces to the classical, integer coordination number
for regular polyhedra (Hoppe, 1979).

The introduction of the concept of hybrid twins permits
to rationalize some of the twins that were so far consid-
ered non-Friedelian (Table 1). Hereafter we present the de-
tailed analysis of two cases.

Case study 1: the {052} twin in pyrite

Although the most frequent twin in pyrite (space group
Pa3, a = 5.417 A) is the common spinel law {111}/(111),
twin index 3, several other twins have been reported too,
some of which (Smolaf, 1913) are definitely non-Friede-
lian. Among these, a non-negligible number of twins have
been found repeatedly, excluding thus the possibility of an
accidental association. Here we take the {052} twin as a
first case study of hybrid twin, because of its high twin
index, and because the cubic symmetry of the individual
makes particularly simple the analysis and graphical inter-
pretation. For the calculation of the twin index see Ta-
ble 2; the obliquity is obtained as the angle between
[uvw], the rational direction quasi-normal to (hkl), and
[hkD1*, the reciprocal-lattice direction normal to (hkl).

In a cubic crystal, each (hkl) plane is perpendicular to
the [hkl] direction. Therefore, the cell of Lt is in our case
defined by (052)/[052], which results in the twin index
n =29. Such a high index puts the twin outside the possi-
bility of interpretation on the basis of the classical reticu-
lar theory, despite the zero obliquity; i.e., it is clearly a
non-Friedelian twin. Nevertheless, among the 28 nodes
out of 29 that are not restored by the twin operation, some
are quasi-restored and their contribution should not be ig-
nored in the reticular interpretation of this twin.

Fig. 1a shows the (100) plane of L and the corresponding
projection of the cell based on the (052)/[052] pair; [025] is
the direction representing the trace of the (052) plane on
(100). Lattice nodes are represented by “0”, the nodes not
restored by the twin operation, and “4”, the nodes restored by
the twin operation. The latter nodes thus correspond to the
corners of the twin lattice cell built on (052)/[052].

The direction [021] makes with the twin axis [052] an
angle of 4.76°, which is within the limits of a Friedelian
obliquity. We can therefore define an alternative cell, Ly,
based on (052)/[021], for which the superposition index is
6 (Fig. 1b). The mesh of L, in the (100) plane is centred:
not only nodes at its corners, but also those centring the
cell (nodes 022 and 003 in the axial setting of the indivi-
dual) are quasi-restored by the twin operation; they are
indicated as “1”. All the other nodes are indicated as “0”.
Exactly in the same way, the plane (021) makes an angle
of 4.76° with (052), and thus we can define a further alter-
native cell, Lg, based on (021)/[052] for which the super-
position index is again 6 (Fig. 1c): [012] is the direction
representing the trace of the (021) plane on (100). The
mesh of Ly in the (100) plane is centred: not only nodes
at its corners, but also those centring the cell (nodes 022
and 003 in the axial setting of the individual) are quasi-
restored by the twin operation; they are indicated as “2”.
All the other nodes are indicated as “0”.

Finally, Fig. 1d is the superposition of Fig. 1a, 1b and
Ic. The numerical value in correspondence of each node
is the sum of the values in the three figures and permits to
identify without ambiguities the components. The node at
the origin is indicated as “7”, because it is common to the
three cells, L1, Lo and Lg (“1” 4+ “2” 4 “4”). Nodes indi-
cated as “6” are common to the cells of Ly and Ly
(“4” + “2”). Nodes indicated as “5” are common to the
cells of Lt and L (“4” + “1”). Nodes indicated as “3” are
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Fig. 1. Interpretation of the (052) twin in pyrite as hybrid twin. (a) (100) plane of the lattice of the individual, with the twin-lattice cell defined
by the pair (052)/[052]: twinning by reticular merohedry, index 29, obliquity zero. Nodes restored exactly by the twin operations are shown as
“4”, those not restored as “0”. (b) A smaller cell (cell of L) is defined by the pair (052)/[021], which corresponds to a subset of nodes of L;
(superposition index 6) quasi-restored (obliquity 4.76°) by the twin operation (“1”). [025] is the direction representing the trace of the (052)
plane on (100). The cell of Ly is A centred and a-unique monoclinic and can be transformed into an mP cell defined by the transformation
cP — mP (100/022/003) (matrix read by columns). The axes of the mP cell are indicated as b" and c’. (¢) The cell of Lg is defined by the pair
(021)/[052], which corresponds to a second subset of nodes of Lj quasi-restored (same superposition index and obliquity as La) by the twin
operation (“2”). [012] is the direction representing the trace of the (021) plane on (100). As in the case of Ly, the cell of Ly is A centred and a-
unique monoclinic, and is the transformed into an mP cell by the matrix transformation ¢cP — mP: (100/030/022). The axes of the mP cell are
indicated as b” and ¢”. (d) Hybrid twin obtained by overlapping (a), (b) and (c). The numeric code assigned to each node shows whether a node
is (quasi)restored by any of the three pairs (non-zero code) or not (zero code). The numerical value of the codes is the sum of the corresponding
values in each of the three pairs, and the result identifies uniquely the pairs (quasi)restoring the corresponding node.

common to the cells of Ly and Ly (“2” + “1”). Nodes
indicated as “1”, “2” and “4” belong to one cell only.

The cell of Lt contains St = 1 node of L, S5 = int (29/6)
=4 nodes of L and Sg = int (29/6) = 4 nodes of Lg, and
the effective twin index is ng =S =29/(1 + 4 +4)=3.2
(Fig. 1d).

The twin under consideration, rather than a non-Friede-
lian twin by reticular merohedry with index 29, is a hy-
brid twin that, on reticular basis, is cooperatively sup-

ported by three different sublattices implying both
reticular merohedry and reticular pseudo-merohedry; its ef-
fective twin index is 3.2 and has a composite obliquity
(0, 4.76). Obviously, non-zero obliquity twin laws in cubic
crystals are meaningful only as components of hybrid
twins, when the zero-obliquity law corresponds to a high-
index non-Friedelian twin.

Finally, it must be pointed out that the pair (021)/[021]
cannot represent the twin law for the observed twin. In fact,
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the measured morphological angle is 43°36’, which corre-
sponds to (052) as twin plane, whereas (021) as twin plane
requires 53°8 and corresponds to another, different twin.
To be noted that the same type of analysis here pro-
posed for the {052} twin of pyrite applies to all cubic
crystals showing the same twin law because in the cubic
system the twin laws do not depend on the cell parameter.
However, the effective twin index is affected by the Bra-
vais type of L;. The same twin has been reported in gale-
na, which however has a cF lattice type, instead of cP as
in the case of pyrite. Therefore, nan =ng =12, Sy = Sp
=int (29/12) =2, ng = 29/(1 + 2 + 2) = 5.8 (Table 1).

Case study 2: euxenite and enargite {201} twins

Euxenite-Y (Y,Ca,Ce)(Nb,Ta,Ti),0¢ (Pcan, a=15.52,
b=14.57, ¢=5.166 A) and enargite CuzAsSs (Pnm2,
a=641, b=742, ¢c=6.15 A) give a twin with twin
plane (201). The c/a ratio close to 0.95 makes the direc-
tion normal to (201) a rational direction with relatively
low indices, [704]. The cell of Lt is mB, the twin is index
9 and the obliquity zero. Not far from [704] another lat-
tice direction, [201], has a shorter periodicity and defines
a smaller cell of type mP: the pair (201)/[201] defines the
LA sublattice which corresponds to a superposition index
of 5 and an obliquity of 3.0°.

Fig. 2 shows the cells of Ly (nodes “2”), of L, (nodes
“1”), and common to both cells (nodes “3”). Because
St =2 and S = int (18/5) = 3, the effective twin index is
ng = Sg = 18/(2 + 3) = 3.6. Twinning in this example is a
hybrid between a reticular merohedry and a reticular pseu-
do-merohedry.

Whereas one might simply describe this twin as a twin
by reticular pseudo-merohedry, because both the index and
the obliquity are within the Friedelian limits, the cell
based on (201)/[704] cannot be ignored: despite the rela-

c

=

o 0 9 o 1 o o\o o
[102]

(021) twin in euxinite-Y and in enargite

Fig. 2. Reticular interpretation of the {201} twin in euxenite-(Y) and
enargite. [704] is the direction perpendicular to the twin plane. [102]
is the direction representing the trace of the (201) plane on (010).
Nodes exactly restored by the twin operation define the cell of Ly,
based on the pair (201)/[704] and are shown as “2”. (201)/[201] is an
alternative pair based on quasi-restored nodes (“1”’) defining the smal-
ler cell Ls. Nodes common to both cells are indicated as “3”.

tively high (but not prohibitive) twin index, the zero obli-
quity makes the contribution from this pair not negligible.
It would be in fact hardly justifiable to accept as correct
description of the twin the overlap of one node out of five
approximated by 3° and to reject the exact overlap to one
node out of nine. This example shows thus that some Frie-
delian twins close to the limits of Mallard’s criterion may
actually be better considered hybrid twins, at least under
specific metric conditions. The criterion to judge the sig-
nificance of the contribution from a second (third) pair is
the value of the effective twin index with respect to the
classical twin index corresponding to the Friedelian twin.

Discussion

Following Friedel, the occurrence of a twin has been here
discussed in terms of the lattice; nevertheless, this occur-
rence also depends on the atomic coherence at the compo-
sition surface, which may be two-dimensional, in case of
contact twins, or extended within the bulk of the indivi-
duals, for penetration twins (see, e.g., Buerger, 1945; Hol-
ser, 1958). To describe the degree of atomic overlap pro-
duced by the twin operation, Takeda etal. (1967)
introduced the concept of restoration index, which is the
structural counterpart of the twin index.

The two approaches are not in contradiction. In fact, the
structural motif in a crystal is repeated with the periodicity
of the lattice, a high degree of coincidence of the lattices
of the individuals corresponds to a high degree of continu-
ity of the structural motif in the different, non-equivalent
orientations of the individuals. On this basis, the reticular
theory of twinning was able to explain the occurrence and
formation probability of most twins, and is still useful for
extensions (see Nespolo etal., 1999a, b, c; Nespolo and
Ferraris, 2000). In particular, the so-called “Mallard’s cri-
terion” ranks the probability of occurrence of a twin on the
basis of its twin index and obliquity. Twins that do not
satisfy this criterion (here called non-Friedelian twins)
should occur only exceptionally and probably in conditions
far from the thermodynamic equilibrium. Actually, they are
rarer than the low-index twins, but not so rare to be consid-
ered exceptions to a criterion or occasional associations
formed under unique conditions.

We have shown that in several cases the occurrence of
non-Friedelian twins can still be explained on the basis of
the classical reticular theory by introducing the concepts
of hybrid twin and effective twin index. The Mallard’s
criterion on the twin index and twin obliquity has been
essentially retained, but applied to the whole hybrid twin.

A non-Friedelian twin corresponds to a hybrid twin
when its high twin index implies the near-superposition of
at least a second sublattice with higher degree of quasi-
restoration. In this respect, Friedel’s statement that the
twin obliquity plays a secondary role in determining the
probability of occurrence of a twin has to be read under a
new light. In fact, the second sublattice corresponds to a
higher obliquity but also to a higher degree of superposi-
tion, and its contribution to the global restoration of lattice
nodes is essential to explain the occurrence of such twins.

It should also be emphasized that the importance of a
relatively high degree of quasi-restoration, when the de-
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gree of exact restoration is too low to be considered mean-
ingful, was already pointed out by Sueno etal. (1971),
with the introduction of the concept of pseudo-tessellation.
It was however employed in the special case of two-di-
mensional regular aggregates of layered crystals, which
are more directly connected to plesiotwins than to hybrid
twins. Its role in twins was instead not realized before.

Some examples of non-Friedelian twins that cannot be
explained as hybrid twins remain, one of which is the com-
mon 60° twin in staurolite, twin index 12, which does not
satisfy the conditions here established for a hybrid twin (see
Table 1). This shows that the Friedelian lattice conditions,
even with the extension introduced by this paper, may not
be sufficient to explain all known twins. The application of
the concept of lattice complex (see, e.g., Fischer etal.,
1973) to twinning has sometimes given a structural support
to the reticular explanation, as in the case of pyrite and di-
genite analysed by Donnay and Curien (1960); a subset of
the atoms occupy the Wyckoff positions corresponding to a
lattice complex and are common to the whole twinned edi-
fice, whereas the others have different orientation in each
individual. It is possible that the same argument may help
explaining the occurrence of non-Friedelian non-hybrid
twins, although to date we are not aware of any example.

Another possible explanation comes from the study of
the atacamite twins, which have been interpreted in terms
of parallelism of atomic chain-links, instead of lattice rows
(Hartmann, 1960).

The character of hybrid twin may be revealed by a
careful analysis of the diffraction pattern. When the hybrid
twin consists of pseudo-reticular merohedries, a few reflec-
tions are almost superposed (split reflections): they corre-
spond to the Lt lattice, which is characterized by a large
twin index n, i.e. a small fraction 1/n of quasi-restored
nodes. A larger number of reflections are not superposed
but separated by a small angle ¢: they correspond to the
La (Lp) lattices (1/na and 1/ng are larger than 1/n). The
rest of the diffraction pattern is composed of reflections
that are farer apart: they correspond to the part of L; that
does not contribute to the above sublattices.

When the hybrid consists of a reticular merohedry and
one (two) reticular pseudo-merohedry, the situation is the
same but the reflections corresponding to Ly are exactly
superposed.

On the whole, the appearance of the diffraction pattern
of a hybrid twin is the same as in a reticular pseudo-mero-
hedry. The few superposed reflections, if not recognized
as such, will however reduce the quality of the refinement;
their recognition requires however a full understanding of
the twin law.

Acknowledgments. We wish to thank Prof. Hans Grimmer (ETH Zii-
rich and PSI Villigen, Switzerland) for useful discussions, and Prof.
Enrique Gutiérrez Puebla (Instituto de Ciencia de Materiales. CSIC,
Madrid) for help in bibliographic research. GF acknowledges the Ita-
lian Ministry of University and Scientific Research (MIUR) for finan-
cial support.

References

Bravais, M. A.: Etudes cristallographiques. Troisieme partie. Des ma-
cles et des hémitropies. J. Ecole Polytechn. XX (XXXIV) (1851)
248-276.

Buerger, M. J.: The Genesis of Twin Crystals. Am. Mineral. 30
(1945) 469-482.

Donnay. J. D. H.; Curien, H.: The concept of “lattice complex” in the
theory of twinning. Cursillos y Conferencias, Institute “Lucas
Mallada” CSIC, VII (1960) 13—-14.

Donnay, J. D. H.; Donnay, G.: Twinning, section 3.1.9. In: Interna-
tional Tables for X-Ray Crystallography, Vol. 1II. Birmingham:
Kynoch Press (1959).

Drugman, J.: On f-quartz twins from some Cornish localities. Miner-
al. Mag. 21 (1927) 366-382.

Ferraris, G.; Makovicky, E.; Merlino, S.: Crystallography of modular
materials. IUCr/Oxford University Press (2004), X 4 370 pp.

Fischer, W.; Burzlaff, H.; Hellner E.; Donnay, J. D. H.: Space Groups
and Lattice Complexes. U.S. Dept. Commerce, Nat’l Bur. Stand.,
NBS Monograph 134 (1973) VI + 177 pp.

Friedel, G.: Etude sur les groupements cristallins. Extrait du Bulletin
de la Société de I'Industrie minérale, Quatrieme série, Tomes III
et IV. Saint-Etienne: Société de 1'Imprimerie Theolier J. Thomas
et C. (1904).

Friedel, G.: Contribution a 1’étude géométrique des macles. Bull. Soc.
fr. Minér. 43 (1920) 246-295.

Friedel, G.: Sur les macles du quartz. Bull. Soc. fr. Minér. 46 (1923)
79-95.

Friedel, G.: Lecons de Cristallographie. Nancy, Paris, Strasbourg:
Berger-Levrault (1926).

Grimmer, H.; Kunze, K.: Twinning by reticular pseudo-merohedry in
trigonal, tetragonal and hexagonal crystals. Acta Crystallogr. A60
(2004) 220-232.

Grimmer, H.; Nespolo, M.: Geminography: the crystallography of
twins. Z. Kristallogr. 220 (2005) accepted.

Hahn, T.; Klapper, H.: Twinning of crystals. Sect. 3.3. In: Interna-
tional Tables for Crystallography, Vol. D, (Ed. A. Authier). Inter-
national Union of Crystallography/D. Reidel Publishing Company
(2003).

Hartmann, P.: Epitaxial aspects of the atacamite twin. Cursillos y
Conferencias, Institute “Lucas Mallada” CSIC, VII (1960) 15-18.

Holser, W. T.: Relation of Symmetry to Structure in Twinning. Z.
Kiristallogr. 110 (1958) 249-265.

Hoppe, R.: Effective coordination numbers (ECoN) and mean fictive
ionic radii (MEFIR). Z. Kristallogr. 150 (1979) 23-52.

Le Page, Y.: Mallard’s law recast as a Diophantine system: fast and
complete enumeration of possible twin laws by [reticular] [pseu-
do] merohedry. J. Appl. Crystallogr. 35 (2002) 175-181.

Mallard, E.: Sur la théorie des macles. Bull. Soc. fr. Minér. 8 (1885)
452-469.

Nespolo, M.; Ferraris, G.: Twinning by syngonic and metric merohe-
dry. Analysis, classification and effects on the diffraction pattern.
Z. Kristallogr. 215 (2000) 77-81.

Nespolo, M.; Ferraris, G.: The oriented attachment mechanism in the
formation of twins — a survey. Eur. J. Mineral. 16 (2004a) 401—
406.

Nespolo, M.; Ferraris, G.: Applied geminography — Symmetry analy-
sis of twinned crystals and definition of twinning by reticular
polyholohedry. Acta Crystallogr. A60 (2004b) 89-95.

Nespolo, M.; Ferraris, G.; Durovi¢, S.; Takéuchi, Y.: Twins vs. mod-
ular crystal structures. Z. Kristallogr. 219 (2004) 773-778.

Nespolo, M.; Ferraris, G.; burovié, S.: OD character and twinning —
Selective merohedry in class II merohedric twins of OD poly-
types. Z. Kristallogr. 214 (1999a) 776-779.

Nespolo, M.; Ferraris, G.; Takeda, H.; Takéuchi, Y.: Plesiotwinning:
oriented crystal associations based on a large coincidence-site lat-
tice. Z. Kristallogr. 214 (1999b) 378-382.

Nespolo. M.; Kogure, T.; Ferraris, G.: Allotwinning: oriented crystal
association of polytypes — Some warnings on consequences. Z.
Kristallogr. 214 (1999c) 1-4.

Palache, C.; Berman, H.; Frondel, C.: The system of mineralogy of
James Dana and Edward Salisbury Dana, seventh edition, New
York: Wiley; London: Chapman, Vol. I third printing (1952).

Smolaf. G.: Die Pyritzwillinge. Z. Kristallogr. 52 (1913) 461-500;
Taf. VI-XI.

Sueno, S.; Takeda, H.; Sadanaga, R.: Two-dimensional regular aggre-
gates of layered crystals. Mineral. J. 6 (1971) 172-185.

Takeda, H.; Donnay, J. D. H.; Appleman, D.: Djurleite twinning. Z.
Kristallogr. 125 (1967) 414-422.



